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called by Wilking, the dual leaves. More precisely, we investigate the attainable sets
A4 (C) of the set of analytic vector fields C determined by the family of horizontal
unit geodesic vector fields C to the fibers 7 = {p~!(c)} of a homogeneous analytic
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then the attainable sets coincide with the orbits. Furthermore, if the flag curvature
is positive then M coincides with the attainable set of each point. In other words,
fixed two points of M, one can travel from one point to the other along horizontal
broken geodesics.
In addition, we show that each orbit O(q) of C associated to a singular Finsler
foliation coincides with M, when the flag curvature is positive, i.e., we prove
Wilking’s result in Finsler context. In particular we review Wilking’s transversal
Jacobi fields in Finsler case.
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1. Introduction

Given a Riemannian submersion p : M — B and the Riemannian foliation F = {p~1(¢)}.cp, we can
associate to it the so called dual foliation F# = {Ljf}, where each leaf of Lf € F# is defined as the set of
points x € M that are the end point of a piece-wise smooth horizontal geodesic starting at q.
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In [13] Wilking proved that Sharafutdinov retraction is smooth using the dual foliation of the metric
retraction onto the soul. He also proved that if the curvature is positive then M coincides with one single
leaf of F#. In fact this result was proved in the more general context of singular Riemannian foliations.

Dual foliations can also be seen from the point of view of geometric control theory. We can consider the
set of smooth vector fields C = { ﬁ}ueU determined by the family of horizontal unit geodesic vector fields
ﬁ“ i.e., those whose integral curves are horizontal unit speed geodesic segments. With this approach, Lq# is
the attainable set A,(C). Since in Riemannian geometry this controls system is symmetric (if ﬁ; € C then
—fu € C), each orbit O(q) coincides with A,4(C), and in particular the leaf L¥ is an immersed submanifold.

When we consider this discussion in the broader context of Finsler geometry, we see a significant con-
ceptual shift. As illustrated in the simple Example 2.25, Ljf = A,;(C) does not need to be a submanifold,
since it does not need to coincide with the orbit O(q). In fact the set of smooth vector fields C = {f,} may
no longer be symmetric.

In this paper, we investigate the attainable set A,(C) of the set of smooth vector fields C determined by
the family of horizontal unit geodesic vector fields to the fibers F = {p~!(c)} of a homogeneous analytic
Finsler submersion p: M — B.

Theorem 1.1. Let u: G x M — M be an analytic Finsler action on an analytic compact Finsler manifold
M. Assume that G is compact and that the orbits are principal. Let p : M — M/G = B be the Finsler
submersion describing the homogeneous foliation F = {p~(c)} and C = {fu}uev be the set of horizontal
unit geodesic vector fields associated to the submersion p. Then

(a) If the orbit O(q) is embedded then it coincides with the attainable set A4(C).
(b) If (M, F) has non negative flag curvature and the flag curvature at one point qo is K(qo) > 0 then
AG(C) = O(q) = M for each q € M.

With this nice and simple result we hope to stress to an audience of mathematicians with good knowledge
on Riemannian geometry, how natural is the relation between geometric control theory and Finsler geometry.
In particular, we try to write this note in a self contained presentation. Theorem 1.1 also motivates natural
questions that could be explored in future research. The first one is how to generalize it, dropping for
example the condition of homogeneity of the submersion (see Remark 3.3) or even considering the most
general situation, i.e., dual foliations of singular Finsler foliation; see [2]. A more involving question is
whether dual foliations could be used to prove smoothness of class of Finsler submetries, as they were used
in Wilking’s work in the Riemannian case; see [13].

Item (b) of Theorem 1.1 follows direct from item (a) and from the Proposition 1.2 below, that assures
(as in the Riemannian case) that the orbits of the set of horizontal unit geodesic vector fields associated to
a singular Finsler foliation (e.g., partition of M into orbits of a Finsler action) coincide with M when flag
curvature is positive. Note nevertheless that Proposition 1.2 does not deal with attainable sets, that seems
to us the main subject of study in the Finsler case.

Proposition 1.2. Let (M, F) be a complete Finsler manifold with non negative flag curvature and F = {L}
a singular Finsler foliation. Let C = {f;} be the set of horizontal unit geodesic vector fields of F. Assume
that there exists a regular leaf Ly so that each point of this leaf has positive flag curvature K > 0. Then the
orbit O(q) of C coincides with M.

This paper is organized as follows: In Section 2 we review a few facts on geometric control theory
and Finsler geometry that will be used in this paper. Item (a) of Theorem 1.1 is proved in Section 3.
Proposition 1.2 (and hence item (b) of Theorem 1.1) is proved in Section 4, accepting a few facts on Wilking’s
transversal Jacobi fields and the Jacobi triples in Finsler case, that are revised in Section 5. In particular,
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we hope that the review presented in Section 5 allows Finslerian geometers to come into contact with a tool
that has been useful in the study of Riemannian submersions and (singular) Riemannian foliations.
Acknowledgment: The authors are thankful to Benigno O. Alves for useful suggestions.

2. Background
2.1. A few facts on geometric control theory

Here we review a few results and definitions on geometric control theory extracted from the classical
book of Agrachev and Sachkov [1, Chapters 5, 8] and [11,12].

Let N be a manifold and C = { ﬁ} be a set of smooth (analytic) vector fields everywhere defined, i.e.,
the union of the domains of elements of C is V. This condition will be always used in this paper.

The attainable set of the family C through ¢ is defined as:

Ag(€) = {0 0eTi(g), ;2 0,k €N, fi e C)
where et/ is the flow of f; € C in instant t. The orbit of the family C through q is
O(q) = {et"ﬁ“ O--~oet1fl(q), t;eR, keN, fi eC}
Orbits have nice structures as we see in the next result.

Theorem 2.1 (Nagano-Stefan-Sussmann). For a given set of vector fields C everywhere defined on a smooth
manifold N, the partition {O(q)}qen is a singular foliation, i.e.,

(a) each orbit is an immersed submanifold;
(b) for each vy € T,0(q) there ezists a vector field U on N so that ¥(q) = vg and ¥(p) € T,0(p),Vp € N.

Recall that when the leaves of a singular foliation have the same dimension, the singular foliation is called
reqular foliation or just foliation.

Set Lie(C) := Span{[fl, [.., [f_;;_l, f_;;] L f: € C,k € N}. With this concept we can establish conditions
under which the orbit coincides with the manifold.

Corollary 2.2 (Rashevsky-Chow). Let N be a connected manifold and C a set of vector fields. If Liey(C) =
TyN,¥q € N, then N = O(q),Vq € N.

A submodule V (e.g., V = Lie(C)) is locally finitely generated over C°(N), if for each point ¢, there
exists a neighborhood U of ¢ and vector fields ¥y, -, ¥ of V with domain containing U so that V|y =

(8 aidila; € C=(U)}.

Remark 2.3. if a module V is generated by analytic vector fields, it is locally finitely generated. This fact
makes it possible to use relevant results on attainable sets and it is the main reason why we assume
analyticity in Theorem 1.1.

Proposition 2.4. Let N be a manifold and qo € N. If Lie(C) is locally finitely generated over C*°(N), (in
particular when C and N are analytic) then Lie,(C) = T,0(qo) for g € O(qo) and for all orbits O(qp).

Different from orbits, the attainable sets do not need to be immersed submanifolds. But in the case where
Lie(C) is locally finitely generated (e.g., C is analytic), they still have some interesting properties.
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Theorem 2.5 (Krener). If Lie(C) is locally finitely generated, then int(Aq(C)) is dense in Aq(C) C O(q).
Here the density is with respect to the topology of O(q). In particular int(.Aq(C)) # 0.

Let us now move towards results that will allow us to conclude that A, (C) = O(gp) under suitable
hypotheses.

Definition 2.6. Given a complete vector field g on N, a point ¢ € N is called Poisson stable for g if for any
to > 0 and any neighborhood W of ¢ there exists a point x € W and a time t; > to such that e1€(x) € W.
The vector field g is Poisson stable if all points are Poisson stable.

Proposition 2.7 (Poincaré). Assume that N is compact and the flow e'€ of a complete vector field g preserves
a volume of N. Then g is Poisson stable.

Definition 2.8. A complete vector field f tangent to the orbits of C is called compatible with C it A4(C) is

dense in A4 (C U f), with respect to the topology of the orbits.

Proposition 2.9. Assume that Lie(C) is locally finitely generated. If a complete vector field g € C is Poisson
stable in the orbit associated to C, then —g is compatible with C.

Proposition 2.10. Assume that Lie(C) is locally finitely generated. If A, (C) is dense in O(qo) then Ag, (C) =
O(qo)-

2.2. A few facts on Finsler geometry

In this section, we briefly review a few facts on Finsler geometry and Finsler submersions necessary to our
paper, most of them extracted from [8], [2], [3] and [5]. A comprehensive introduction to this rich geometry
can be found in [10].

2.2.1. The metric structure

Definition 2.11. Let M be a manifold. A continuous function F : TM — [0, 400) is called Finsler metric if

(a) F is smooth on TM \ {0},
(b) F is positive homogeneous of degree 1, that is, F(Av) = AF(v) for every v € TM and A > 0,
(c) for every p € M and v € T,M \ {0}, the fundamental tensor of F defined as

2

= %0 F2(v + tu + sw)|=s=o

go(u, w)
for any u,w € T, M is a nondegenerate positive-definite bilinear symmetric form, i.e., an inner product.

In particular, if V' is a vector space and F' : V — R is a function smooth on V' \ {0} and satisfying the
properties (b) and (c) above, then (V| F)) is called a Minkowski space.

The fundamental tensor satisfies a few relevant properties.

Proposition 2.12. For each v € TM \ {0} we have:

(a) gaw = Gu, for all X > 0;
(b) gu(v,v) = F?(v);
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(€) go(v,u) = 3 ZF?*(v+su)|s=0 = L(v)u where £ : TM\{0} — T*M\ {0} is the Legendre transformation;
(d) gv(v,u) < F(v)F(u), for allu € TroyM.

We can define the length of a smooth piecewise curve v : [a,b] — M as lp(y) = f; F(+/'(s))ds. The
distance from p to ¢ can be defined as d(p, q) = inf,cq, , Ir(7), where €, ; is the set of curves v : [0,1] — M
joining p = v(0) to ¢ = ¥(1). Unlike Riemannian geometry, the distance d(p, q) does not need to be equal
to the distance d(g, p). But we can still have several important metric geometric concepts from Riemannian
geometry, as long as we take into account the orientations of the curves involved in the definition of the
distances. For example, instead of talking about a metric ball, now we have to talk about future balls, i.e.
Bf(p) ={x € M |d(p,z) < r}, and past balls, i.e. B, (p) = {x € M |d(z,p) < r}.

Since we have a length functional on the space of smooth piecewise oriented curves, we can define a
geodesic as an oriented curve that locally minimizes the distance. More precisely a curve v : [a,b] — M
is called geodesic if for each sg € [a,b] there exists € > 0 so that d(y(so),7(s)) = f:;) F(+'(t))dt where
s € [s0, S0 + €]. Just like in Riemannian geometry, geodesics can also be seen as critical points of energy
functional v — fab F2(/(s))ds or as curves with zero accelerations with respect to the (Chern) covariant
derivative. But before we start to review the concept of Chern connection, let us end this subsection with
a concrete important example.

Example 2.13 (Randers metric). Let h be a Riemannian metric and @ be a smooth vector field with ||| < 1,
where ||| = h(w@, @)"/2. We define the Randers metric F' with Zermelo data (h, ) by the intrinsic equation:

lo - P(o)a]| = F(v).

In other words, Z)(¢) = Z}(€) + eu(p) where the indicatriz I () is defined as {v € T,M | F(v) = ¢}. The
Randers metric F' can also be defined as F' = o + 8 where « is a Riemannian norm and § is a 1-form so
that ||8|la < 1. There is a bijection between (h, @) and («, 8), but we will not need it in this paper.

We are interested in two properties of geodesics in Randers manifolds that we formulated as follows:

Proposition 2.14. Let F' be a Randers metric with Zermelo data (h, &), where & is a Killing vector field on
M with respect to h. Let v be a unit speed geodesic with respect to h.

(a) Then t — B(t) = '™ o y(t) is a unit speed geodesic with respect to the Randers metric F.

(b) Ifv is a unit speed geodesic starting orthogonal to a submanifold L with respect to the Riemannian metric
h, i.e. h(7/'(0),v) = 0 for all v € Ty )L, then the unit geodesic 3 (with respect to ') is orthogonal to L
with respect to ggr, i.e., ggi(0)(B'(0),v) =0 for all v € Ty(g)L.

Remark 2.15. There is also an easy way to produce Finsler actions on Randers spaces. An action p : Gx M —
M is a Finsler action i.e., F((du) = F') on Randers spaces with Zermelo data (h, @) if and only if the action
is isometric (with respect to h) and @ is G invariant, i.e., Wo p, = dp,w.

2.2.2. Chern connection and Jacobi fields
Let us now review the concept of Chern connection associated with a Finsler metric F' as a family of

affine connections.

Proposition 2.16. Given a vector field v without singularities on an open set U C M, there exists a unique
affine connection V¥ on U (the so called Chern connection) that satisfies the following properties:
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(a) V" is torsion-free, namely,

—

for every vector fields f and g on U,
(b) V? is almost g-compatible, namely,

R gv(ga 117) = gv(v?ga u_j) + gv(ga V})“w> +2 Cv(v})“ﬁa 7 w)
Here C, is the Cartan tensor associated with the Finsler metric defined as:

10

Cy (wh w2, w3) = 5&91}—&-311}1 (w27 w3)|s=0

1o >
= = F2 iWi)|s1=s0=s3=
4653882881 (’U-’-;SU})‘ 1=82=53=0

for every p e M, v e T,M\ {0}, and wy,ws,ws € T,M.

It can be checked that the Christoffel symbols of V¥ only depend on v = #(p) at every p € M, and not
on the particular extension. Therefore, the Chern connection is an anisotropic connection. Moreover, it is
positively homogeneous of degree zero, namely, V*” = V* for all v € TM \ {0} and A > 0. One can also
prove the following property of Cartan tensor:

Cy (v, w1, we) = Cy(wy,v,we) = Cy(wy, wae,v) = 0. (2.1)

Let v: I C R — M be a piecewise smooth curve and ¢ — i(¢) a vector field without singularities along
7, i.e., W is a section of the pullback fiber bundle v*(T'M) over I. By considering the pullback of the Chern
connection V" we induce the covariant derivative Vd—zj along ~. In particular we have that YTZJ f (t) = N f
when f € X(M).

Now we can give an equivalent definition of geodesic. A smooth curve v : I C R — M is a geodesic if
and only if %’y’(t) =0.

A geodesic can also been seen as the projection of an integral curve of the (Finsler) geodesic spray. In
other words, we have a vector field g (the Finsler geodesic spray) on TM — {0} so that the geodesic v with
initial condition v/(0) = v, € T,M is y(t) = 7(e'€v,), where 7 : TM — M is the canonical projection. We
say that (M, F) is a complete Finsler manifold, if the Finsler geodesic spray g is a complete vector field, i.e.,
its integral curves are defined for all ¢ € R. The Finsler geodesic spray g has also the interesting property
that its flow preserves a volume form w (the so called volume of the Sasaki metric) on TM — {0}, see [10,
Propositions 5.4.2, 5.4.3].

When we consider a geodesic variation ¢ — ~,(t) = y(s,t) of a geodesic v, then the variational vector
field J(t) = %7(0,1&), is called Jacobi vector field along ~. It is characterized by solving the differential
equation

J"(t) + Ry (J(t)) = 0. (2.2)
Here J'(t) = Vd—?J and R, : T,M — T,M is an operator well defined for each p € M and v €

T,M \ {0} called Jacobi operator. It can be well defined by properties of isotropic connections; see [3,
Section 5].
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The flag curvature for v € TM \ {0} and w € Ty,)M is defined in analogous way to the sectional
curvature in Riemannian case.

9o (Ryw, v)
Gv (U7 U)gv (w7 w) —Gv (U’ w)

K(v,w) = 5
Remark 2.17. There is a natural way to produce Finsler spaces with non negative or positive flag curvature.
Given a Riemannian manifold (M,h) with nonnegative or positive sectional curvature, the Randers space
(M, F) with Zermelo data (h, @) (where @ is a Killing field of (M, h)) has nonnegative or positive flag
curvature.

The next proposition provides us with a natural relationship between these well-known concepts in
Riemannian geometry and their analogues in Finsler geometry.

Proposition 2.18. Let (M, F) be a complete Finsler manifold and ¥ be a geodesic vector field on an open
subset U C M, let g := gy denote the Riemannian metric on U induced by the fundamental tensor g and let
V and R be the Levi-Civita connection and the Jacobi operator of §, respectively. Then, for any f € X(U),

(a) V0= V%0 and Vg f = V3 f,
(b) Ry f=Rsf.

As a consequence, the integral curves of U are also geodesics of g, and the Finslerian Jacobi operator and
Jacobi fields along the integral curves of U coincide with those of g.

We finish this subsection by recalling the concept of L-Jacobi fields.

Definition 2.19. Let L be a submanifold of a complete Finsler manifold (M, F) and v : [a,b] — M a unit
speed geodesic orthogonal to L at p = y(a). We say that a Jacobi field J is a L-Jacobi field if

o J(a) is tangent to L;

o SywJ(a) = tany(,)J'(a) where S, : T,L — T,L is the shape operator defined as S, (u) =
tany(a)vzl(a)f with £ an orthogonal vector field along L such that £, = 7'(a) and tan.(, is the
J~'(a)-orthogonal projection onto T}, L.

Remark 2.20. As proved in [3, Proposition 3.5], a Jacobi field J along « is a L-Jacobi field if and only if it
is the variational vector field of a variation of v by orthogonal geodesics to L.

2.2.8. Finsler submersion

Definition 2.21. A submersion p : (M, F) — (B, F*) between Finsler manifolds is a Finsler submersion
if dpp(BZf(O,l)) = Bf(;) (0,1), for every p € M, where Bf((),l) and Bf(;) (0,1) are the unit balls of the
Minkowski spaces (T, M, F,) and (T, B, F;(p)) centered at 0, respectively.

The first natural example is to consider a Finsler action p: G x M — M (i.e., F(duy) = F) where all
orbits have the same isotropy type, i.e., the isotropy groups G, = {g € G|u(g,p) = p} are conjugate to
each other. Then the projection p : (M, F) — (M/G, F*) is a Finsler submersion where F™* is the induced
Finsler norm on B = M/G.

It is also useful to construct Finsler submersions in Randers spaces starting with a Riemannian submer-
sion.
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<+

Fig. 1. Figure generated by the software geogebra.org illustrating Lemma 2.22, i.e., a Randers submersion that was produced starting
with the trivial Riemannian submersion p : R® — R? defined as p(z) = (21, z2) and wind W = (0, 0, 1 sin®(z1)+ 1). The horizontal
unit speed geodesic is v(t) = (t,0, 3¢ — “"1(—62“) Note that the union of normal vectors to a tangent space of the fiber is a (normal)

cone, and no longer a normal subspace as it was in the Riemannian case. As remarked the geodesics of a Finsler submersion are
orthogonal to the leaves and hence tangent to the normal cones v(L).

Lemma 2.22. Let p: (M,h) — (B, h*) be a Riemannian submersion, w* a vector field on B and W a vector
field in M that is p-related to w*, i.e., dpow = w* op. Then p: (M, R) — (B, R*) is a Finsler submersion,
where R is the Randers metric with Zermelo data (h, W) and R* is the Randers metric with Zermelo data
(h*,w*). See Fig. 1.

Given the Finsler foliation F = {L} with leaves L = p~!(c), we say that a geodesic v: I C R — M is
horizontal if for each t € I the vector 7/(t) is an orthogonal to the leaves L € F, i.e., g, (7/(t), w) = 0 for
all w € T’y(t)L'

In the same way as in Riemannian geometry, in Finsler geometry we have the lift property of geodesics.

Proposition 2.23. Let 7 : (M, F) — (B, F*) be a Finsler submersion. Then an immersed curve on B is a
geodesic if and only if its horizontal lifts are geodesics on M. In particular, the geodesics of (B, F*) are
precisely the projections of horizontal geodesics of (M, F).

Once we fix a geodesic vector field, we can reduce the study of Finsler submersions to Riemannian
submersions.

Proposition 2.24. Let 7 : (M, F) — (B, F*) be a Finsler submersion. Let v* be a geodesic vector field in
some open subset U* of B. Then the horizontal lift ¥ of v* is a geodesic vector field on U = p~1(U*) and the
restriction ply : (U, gk) — (U*,9E") is a Riemannian submersion, where g¥ and g are the fundamental
tensors of F' and F*, respectively.

We finish this subsection by presenting two simple examples illustrating why the compactness hypothesis
of Theorem 1.1 is important.

Example 2.25. In this example we present an attainable set and orbit of the set of horizontal unit geodesic
vector fields of a Finsler homogeneous analytical submersion on a non compact space, see Fig. 2. Consider
the Riemannian submersion p : (R?, hy) — (R, hy) where p(z1,72) = 21 and h,, is the Euclidean metric on
R™. By Lemma 2.22, taking @ = (0, 5), we have that p : (R?, R) — (R, hq) is a Finsler submersion where R
is the Randers metric with respect to the Zermelo data (ho, ). Let C = {fi, fo} be the set of vector fields
where ﬁ = (1, %) and fg = (-1, %) The integral curves of these vector fields are horizontal geodesics of the
Finsler submersion p : (R?, R) — (R, hy). It is easy to see that A o)(C) is a cone with its interior. More
precisely A(,0)(C) = {z € R?|3z1 < 22,0 < 21} U{z € R?| — 12y < zy,21 < 0}. Also it is clear that
O((0,0)) = R%. In particular O((0,0)) # Ao,0)(C).
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P l\ A,C)

S

Fig. 2. Figure generated by the software geogebra.org illustrating Example 2.25.

Example 2.26. Let 7 : R? — T2 = R2?/(Z x Z) be the canonical projection of the Euclidean plane onto
the torus and the Finsler submersion p : (R?, R) — (R,h;) defined in Example 2.25. Since the fibers of
the submersion p and the vector field @ are invariant by the action of Z x Z, the Finsler submersion p
projects to a Finsler submersion p* : (T2, R*) — (S, h;). Here R* is the Randers metric with Zermelo
data (hg,w*) where the hs is flat metric and the wind w* is p-related with @, i.e., w* o = dm o wW. Define
fI to be m-related to f:; The integral curves of f are horizontal geodesics of p*. Set C* = {f7, f3} and
p* = 7((0,0)). Then it is not difficult to check that A,.(C*) = O(p*).

3. Proof of item (a) of Theorem 1.1
Let N C T'M be the union of unit cone bundle of the fibers of p, i.e., N := Uzepvi(Ly) for L, =

p~(p(x)). It follows from Alvarez Paiva and Duran [8] that N is a compact embedded submanifold of the
unit bundle 7'M and that the diagram below commutes

N— ™ Tl
TI'M‘ T™B (3'1)
M ; B

where py = dp|ny and 7y, and 7w are the canonical projections. Also note that N is invariant by the
geodesic flow €€ and

[T
I
D

~

pnoe °pN (3:2)

where ef® is the geodesic flow in T B.

Remark 3.1. Note that the isometric action p : G x M — M induces an action fi : GX N — N as fig = (1g)«
and the orbits of the action induce the leaves of the foliation JF := {L} where L = py'(c).

Lemma 3.2. The Finsler geodesic spray g restricted to N is Poisson stable.
Proof. In order to prove that the flow is Poisson stable, it suffices to check that
(W) = W1, vt >0, (3.3)

where W is any given proper relative compact neighborhood and | - | is a fixed volume on N that will be
constructed below, recall Proposition 2.7.
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The first step in our construction is to define a metric on the fibers of p : M — B = M/G so that, for
each basic vector field &, the end point map ¢ : G(x) — G(y), defined as n¢(x) = exp, (&), turns to be an
isometry.

Since all orbits are principal, the slice theorem implies that the map x — g, C Gk(g) is smooth (where
GEk(g) is the Grassmannian of g). For a given metric (-,-) on g, we can find a subspace V,, orthogonal to g,
ie, g="V, ®g,, where g and g, are the Lie algebra of G and the isotropy group G, respectively. Now we
define the metric § along the orbits that transform the isomorphism dy,, : (V,, {-,-)) = (TxG(x), §,) into an
isometry.

Since the isotropy groups along (minimal) horizontal geodesics are the same, we have that V,, = V,,, where
y = ne(x). Note that dne¥(z) = ¥(y) where ¥ is the vector field along the orbits defined as ¥(z) = dpu,v for
v €V =V, =V,. These facts allow us to conclude that the map 7 : G(z) — G(y) is an isometry.

Now we can define a volume form w¢ (with respect to the metric §) along the fibersof p: M — B = M/G.
Note that this form is invariant by the end point map, i.e., niwe = wg. The metric g as well the volume
form wg can also be defined on the fibers {Z} of py : N — T'B and we will use the same notation. Note
that if '€ : L, — Ey, then (e€)*we = we. By another abuse of notation, consider wg an extension of the
previous wg to a k-form in N.

We can define the volume form as w = wg A pjywp where wp is the volume form with respect to
the Sasaki metric of T'B. Recall that ef® preserves the volume form for the Sasaki metric of 7' B and
(etﬁ)*wdiz = wG|Zy' These facts together with the fact that pjwp vanishes vectors tangent to fibers allow
one to check that:

(e®)*w = w. (3.4)

Defining |[W| = [j;, w, we conclude that Eq. (3.4) implies Eq. (3.3) and this concludes the proof of the
lemma. O

Remark 3.3. Note that the fact that Finsler geodesic spray preserves volume on T'M does not directly imply
that its restriction to a submanifold of T'M preserves volume of this submanifold. This is one of the reasons
why we are assuming that the submersion p : M — B is homogeneous.

Now we are going to define a set of vector fields C on N that will be related to our original set of vector
fields C on M as follows:

where m3,(§) = . Therefore, once we have proved that Az(C) = O(§) (see Eq. (3.5) below) we will be able
to conclude that A,(C) = O(g) and hence to finish the proof of item (a) of Theorem 1.1.

Consider a set of vector fields C; = { f_;} with the following properties: ﬁ; spam the tangent spaces of
the fibers of mps : N — M, C; is symmetric (i.e. if ﬁ € C; then —ﬁ € () and ﬁ are pg-related, i.e.,
fu ofig = dﬂgﬁ. Now we complete C; with the geodesic spray (restricted to N), i.e., C = {g€}UC;. Note that
the projection of the integral curves of j% = g corresponds to the horizontal geodesics and the projection
of the integral curves of f; (u # 0) measure how it breaks, and in particular 7y (s * §, * y1) is a broken
horizontal unit speed geodesic, where ~; is a integral line of g and d,, is an integral line of f; The attainable
set and the orbit of the family C through gy are denoted by O(g,) and levqo (C). Using this one can check
properties (i) and (ii) stated above.

Lemma 3.4. Consider (5((}) the orbit of the family C through ¢ defined above. Then
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(a) Each orbit O(§) meet all the fibers of px .

(b) The orbits of {O(§)} have the same dimension (i.e., {O(§)} is a reqular foliation).
(¢) If the orbits O(q) in M are embedded then the orbits O(q) in N are embedded as well.
(d) If the orbits O(G) in N are embedded, then g restricts to each orbit is Poisson stable.

Proof. Item (a) Fix a point o € N and consider §; € N. Let vp : [0,r] — B be a piecewise broken unit
geodesic so that v5(0) = pn(go) and v5(r) = pn(dr). By lifting horizontally via p and then lifting via
7w (see (3.1)) we define vy : [0,7] — N as the lift of yg with v3(0) = go. Set v (r) = 2. Note that
pn(G2) = pn(G1) and hence that g2 € qu. Since yn C O(do), we have concluded that g, € O(go) N Zgl and
this finishes the proof of item (a).

Item (b) Recall that the action p : G x M — M induces an action fi : G x TM — TM as jig = (ft4)« and
the orbits of the action fi induce the leaves of F. For a fix leaf Eq, note that ﬁg(é(d)) = 6(ﬁg(cj)). Since fig
is a diffeomorphism, the orbits that meet Zq have the same dimension. On the other hand, it follows from
item (a) that all orbits meet F. Therefore all orbits have the same dimension.

Item (c) Since 7y is a submersion (consequently transverse to O(p)) it suffices to prove that 7, (O(p)) =
(5(up), for all u, € N. The inclusion 7,/ (O(p)) D (5(up) follows immediately from the fact that

a1 (O(up)) = O(p). )

In order to prove that 7, (O(p)) C O(uy) consider v, € 7, (O(p)). Then q = mar(vy) € O(p) which
means that p and ¢ are linked by a broken curve v = -y, * - -- % 77 where each ; segment is either unit
horizontal geodesic or a reverse of a unit horizontal geodesic.

Set i (t) := (Vi (£)), () € Ty, ()M if 7; a unit segment of geodesic and set ¥;(t) := (=7;(t))~. 1) € Ty, 0y M
if 7; is a reverse segment of geodesic. Let §; be an integral line of C; connecting u, with 71(0), é; be an
integral line of C; joining 7;_1(r;—1) with 7;(r;) and J,,+1 be an integral line of C; joining ¥, (r,) with vg.
Then 0p41 * Y, % Op, * Yr—1 * Op—1 * - - - % Y1 * d1 is a broken curve connecting u, with v,, where each segment
is either a integral line of C or a reverse of a integral line of C which means that Vg € (5(1@).

Item (d) For a fixed §o € N consider a small relatively compact trivial f—neighborhood Vo of Go so that
Von (5((}0) has only one connected component. We want to check that for each ¢y there exists t; > ty and
a point Z € Vo N O(do) so that 1 = e"&(F) € Vo N O(do).

We claim that there exists a relatively compact neighborhood V3 C V} and a neighborhood W of e € G
so that:

o if g€ W then ¢g7' € W and p,-1(Vi) C Vp and pg(Vi) C Vp;
o if §j € V} then there exists T € O(do) N Vi so that uy(Z) = ¢, with g € W.

By Lemma 3.2, for each to, there exists § € Vi and t; > tg so that e"€(§) = §;, € V4. Consider & € V;NO(do)
so that § = i4(Z). Since 4 0 €€ = €180 1y, we have §; = e"€(puy(Z)) = py(e"€(Z)) and hence & =
pg-1 (1) = e1€(%). Once pg-1(V1) C Vo and Vo N 6(@0) has only one connected component, we infer that
1€ Von 6((}0) as we wanted to prove. O

We can now end the proof of item (a) of Theorem 1.1. Item (d) of Lemma 3.4 implies that g restricts
to each orbit is Poisson stable. From Proposition 2.9 —g is compatible with C, i.e. Ag(C) is dense in
A;(CU{—=g}) = O(q). Therefore, it follows from Proposition 2.10 that

A4(0) = 0(a). (3.5)

The above equation finishes the proof as remarked before.
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4. Proof of Proposition 1.2 and item (b) of Theorem 1.1

Let us start by recalling the definition of singular Finsler foliation (SFF for short), a class of singular
foliation that includes among other examples, the partition of M into orbits of a Finsler action; for properties
and more examples of SFF see [3] and see [2].

Definition 4.1 (SFF). A partition F = {L} on a complete Finsler manifold (M, F') is called a singular Finsler
foliation if it satisfies the following two conditions:

(a) F is a singular foliation, i.e., for each p € M, each basis {X;} of the tangent space T,L, of the leaf L,
through p, can be extended to vector fields {)_('l} linearly independent, tangent to the leaves of F near
p.

(b) F is Finsler, in other words, if a geodesic v : (—¢,€) — M is orthogonal to the leaf L.« (i.e.
9y (0)(7'(0),v) = 0 for each v € T, )L) then ~ is horizontal, i.e., orthogonal to each leaf it meets.

We also need to present a result that is a direct consequence of Lemma 5.11, a version of Wilking’s lemma
for Finsler geometry.

Proposition 4.2. Let (M, F') be a complete Finsler manifold with non negative flag curvature along geodesic
v : R — M orthogonal (at its initial point) to a submanifold L C M. Denote j,YL the set of all L-Jacobi
fields along . Then

Jf = spang{J € jVL | J(t) =0 forsome t e R} @ {J € JWL | J is parallel}.

As explained in the introduction, item (b) of Theorem 1.1 follows direct from item (a) of Theorem 1.1
and Proposition 1.2. Therefore let us prove this proposition in this section.

Let v : R — M be a unit speed geodesic orthogonal to a regular leaf L at «(0) (i.e., v is an horizontal
geodesic). First we want to check that the first summand of the decomposition presented in Proposition 4.2
is tangent to the orbit O((0)). To prove this it suffices to prove the next lemma.

Lemma 4.3. If a Jacobi field J € J has zero at ty (i.e., J(to) = 0) then it is tangent to the orbit O(~(0)).

Proof. Let t — ~5(t) = v(s,t) be a variation of horizontal unit geodesics orthogonal to L, with p =
7(0,0) = v(0) and so that J(t) = %7(0, t). Consider a basis {X;} of T (4,) L(t)- It follows from item (a) of
Definition 4.1 that these vectors can be extended to vector fields {X’l} that are linearly independent. From
item (b) of Definition 4.1, we have that 0 = g, (X,m;) By differentiating this equation and taking into
account item (b) of Proposition 2.16, we infer:

_ 9 . A~/
0= 50, (%erl(6)
Ve o
=gy, (gXiv Ye(t))

L V%9
+ gy (X, ga’}/s(t))
v'y; / ¥ /
—+ QC%(E’YS(t)aXiaf)’s(t))

Vs
Os

X, X, = Vgo)?i = 0 and Eq. (2.1) allow us to

The above equation, the fact that —oimte = Vit

conclude that
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2 V09
0= g’yc’, (Xz, W%Ws(to)‘szo) - g’y()(X' YR

Eq. (4.1) implies that
J/(to) S H(to) and J(to) =0. (42)

Here %(to) = {’LU S T’y(to)M‘vgw’(to)(wvXi('}/(to)) = O,VZ}

We claim that the normal cone v,y (L)) is tangent to H(to). In order to check this claim, consider a
curve s — v(s) with v(0) = /(o) contained in the unit normal cone, i.e., g, (v(s), Xi(7(t0))) = 0, Vi. By
differentiating this equation with respect to s and taking into account item (b) of Proposition 2.16, we infer
that g, (v'(0), Xi(v(t0))) = 0, Vi, i.e., that v'(0) is tangent to H(to). An argument comparing dimensions
allows one to conclude the proof of the claim, see also proof of [3, Lemma 2.9].

The claim and Eq. (4.2) imply the existence of a variation of geodesics t — f(s,t) so that

o t = f(0,1) = (1),
e t— f(s,t) are geodesics orthogonal to L., i.e., contained in O(v(to)),
« [(s:to) = f(0,10) =(to) and J(t) = 5 f(0,1).

In fact we can define f(s,t) = w(e(t*to)gv(s)) where 7 : TM — M is the canonical projection and s — v(s)
is a curve contained in unit cone Vi(to)(Lv(to)) with v/(0) = J'(t9) and v(0) = 7/ (o).

Since t — f(s,t) are geodesics contained in O(~(tp)) and v(0) € O(v(tp)), we conclude that the variation
t — f(s,t) is contained in O(y(0)) and hence that t — J(t) = 2 f(0,¢) is tangent to O(v(0)) what finishes
the proof. O

Let us now check that codimension of the dual leaf is zero. Assume by contradiction that there exists
v € Loy orthogonal to O((0)), where + is an horizontal geodesic with v(0) = ¢ with K(q) > 0 for g € Ly,.
Consider a L. g)-Jacobi field J, so that J(0) = v. Since we have proved above that the first summand of
the decomposition presented in Proposition 4.2 is tangent to the orbit O(v(0)), we have that J can not be
contained in this summand. Hence, by Proposition 4.2, J must be a non trivial parallel Jacobi vector field,
that implies that the curvature can not be positive, what contradicts our hypothesis that K (q) > 0.

Since we have proved that O(g) has codimension zero for each ¢ € L, and each point z € M is contained
in an orbit O(q) (for ¢ € L,,), we conclude that O(go) = M.

It follows from item (a) of Theorem 1.1 that M = O(qo) = O(¢q) = A,(C). This concludes the proof of
Proposition 1.2 and hence the proof of item (b) of Theorem 1.1.

5. Wilking’s transverse Jacobi fields

We reproduce here, in more general context, the construction of transverse Jacobi fields presented in [13],
in [7] and in [9] in order to obtain a Finslerian version of the Corollary 10 in [13], i.e., Proposition 4.2.

5.1. Jacobi triples and Jacobi equation
A Jacobi triple (E, D, R) is composed by
o Euclidean vector field F (total space) over a open interval I C R (with rank n);

 a covariant derivative D : I'(E) — I'(E) compatible with the fiberwise metric of E;
o a self-adjoint C°°(I)-homomorphism R : T'(E) — T'(E).
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Presented in this way, this definition seems a little artificial. Indeed, this is an algebraic approach whose
intention is to condense the relevant data and properties of Jacobi fields that will be useful throughout
section 5.

Given a Jacobi triple (E, D, R), the kernel of the second order differential operator D? 4+ R will be called
the space of (F, D, R)-Jacobi fields (or simply Jacobi fields) and will be denoted by J(E, D, R) (or simply
by J). Since D? + R is a linear operator, for each ¢t € I, the map J — (J(t), DJ(t)) is an isomorphism
between J and E; @ E;. In particular, dim (J) = 2rank (E) = 2n.

The space of Jacobi fields 7 inherits a canonical symplectic form w given by

w(Jl, JQ) = <DJ1, J2> — <J1,DJ2> .

Note that the right term of this definition is in fact independent of the t parameter. Precisely w is the
pullback of the canonical form by the isomorphism J — (J(t), DJ(t)). As usual, the space of Lagrangian
subspaces of (J,w) (the Grassmannian Lagrangian of (J,w)) will be denoted by A(J), i.e.

AT) :={L C J: L is a Lagrangian subspace of J}. (5.1)

Finally we establish some useful notation. Given Z C J a vector subspace of Jacobi fields for each ¢t € I
it will be denoted

IZ(t):={J@t)eE, :J eI} and I :={Je€Z:J(t) =0}
Following this notation we point out that Z{ is isomorphic to D(Z?)(t) = {DJ(t) : J € I?}.
5.2. Illustrative examples

Looking for a consolidation of our algebraic approach we present some geometrical examples of subspaces
of Jacobi fields in an increasing rate of complexity. The focus is the subspaces determined by the symplectic
structure (i.e. isotropic and Lagrangian subspaces). Some future notation will be presented as well.

Example 5.1 (Finslerian Jacobi fields). Let M be a Finsler manifold with fundamental tensor g and v a

geodesic segment. Observe that (y*T'M, g,(.)) is a Euclidian vector bundle over I. Denote by D;’l the Chern

covariant derivative along v and R the Jacobi operator along . Then (v*TM, DY, R./) is a Jacobi triple.
The set of Jacobi fields associated with (y*T'M, D, R,/) will be denoted by 7.

In the next two examples we are going to use the notation established in the previous example.

Example 5.2 (L-Jacobi fields). Let M™ be a Finsler manifold, L C M a immersed submanifold and ~ :

[a,b] C R — M a geodesic segment such that y(a) € L and +'(a) is g,/ (,)-orthogonal to L. Denote

pry i Tya)yM — T, ()L the canonical projection with respect to the g.,-orthogonal decomposition of 7%, ,) M.
The set o L-Jacobi fields is defined by

JE={J€ T, J(a) € Tyu)L and pr (D J(a)) = Sya)(J(a))},

where S./(4) is the shape operator of L in the direction 7'(a). As we previously discuss, this is precisely the
Jacobi fields obtained by variations of + through geodesics starting perpendicular to L. An advantage in
this presentation is that will became more easily to see that j,yL is a Lagrangian subspace of Jacobi fields.
Clearly the self-adjointness of S,/(,) guarantees that JWL is isotropic, i.e.,
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Fig. 3. Figure generated by the software geogebra.org illustrating a submersion on Randers space, with horizontal geodesic 7,
horizontal bundle H; and the vertical bundle V; of Finsler submersion, see Example 5.3.

(I, J2) = (DY (J1), J2) = (1, DY (Ja))

S0y (T1(0)). Ta(@)) — {1 (a). S, (o) (To(a))

(=
0

where Jy, Jy € jf . The dimension of \7{“ is determined by the linearly independent choices for the initial
conditions of its Jacobi fields which implies that dim (7F) = dim (T, ) L) + dim ((T%,(4)L)*) = 3 dim (7).

Example 5.3 (Finsler submersions). Let w : M™%k — B be a Finsler submersion and v : [a,b] C R — M
a horizontal geodesic; see Fig. 3. Along v it is possible to consider a horizontal bundle H by g,-orthogonal
complement of the vertical bundle V' := v* Ker (dr), which will allow us to define operators analogous to the
O’Neill tensors in Riemannian submersions and thus be able to work with holonomy type of Jacobi fields and
projectable Jacobi fields just like in the Riemannian case. More precisely, we consider S,/ : I'(V) — I'(V)
the shape operator of the fibers in the direction v/, we define A : T(v*TM) — T'(v*TM) by Ay (X) =
(DY XV)H 4+ (DY XH)V and denote Ay := Ay |rm).
The set of holonomy type Jacobi fields (along ~) is defined by

Tl i={J € Jy 1 J(a) € Vyay and DI J(a) = —(Sy(a) + Al(a)(J ()}

and this is an example of isotropic subspace of J,. This is simple to verify since the shape operator is
self-adjoint and the holonomy type Jacobi fields are vertical in its initial point. In fact they are everywhere
vertical. Additionally, once a Jacobi field is determined by its initial conditions it is simple to conclude that
dim (72°") = rank (V) = k.

Like in the case of L-Jacobi fields it is more suitable for computations to define ,,7,];‘01 algebraically and
postpone its geometrical meaning. In this case they can be obtained by variations of « through horizontal
geodesics that are horizontal lifts of the geodesic m o 7.

Another remarkable space of Jacobi field associated with a Finsler submersion is the set of projectable
Jacobi fields which is defined by

j$r°j = {J € j,y : Dx:]v = *S'y/(JV) - A’Y'(JH)}

and this is an example of coisotropic subspace of J,. More precisely this is the symplectic orthogonal of
Iyl To see this, we first observe that JP™ C (J1°')“ which is a direct consequence of the subsequent
computation

w(J1, J2) = (DY J1, Ja) — (Jy, D J)
= (=Sy(a)(J1(a)), 3 (@) + (=A% () (J1(a)), 5" (a))+
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= (J1(a), =Sy (@) (J7 (@) = (J1(a), = Ay (a) (3" ()
=0

where J; € J$01 and Jp € J$r°j. Since the dimension of a subspace of Jacobi fields is determined by linearly
independent, choices for the initial conditions, clearly we have dim (J2*) = dim (Ty(q)M) + rank (H) =
2n+k.

It is worth to mention that the projectable Jacobi fields can be obtained by variations of v through
horizontal geodesics. The term “projectable” is due to the fact that each Jacobi field of ._7$r°j is m-related to
a Jacobi field of Jroy. In fact, there is a well defined projection map . : j$r0J — Jroy which is surjective
and such that Ker (m,) = J2.

In conclusion, a Finsler submersion offers to us an example where all the symplectic-types subspaces of
Jacobi fields (isotropic Z, Lagrangian £ and coisotropic Z*) are present, as follows

7 C L C v
Il I Il
j’*thI C j’){wb C j’$1‘0j

where M, is the fiber of m through b = m(v(a)). Furthermore, as consequence of the isomorphism theorem
applied to m,, we have the following nice geometric interpretation for the symplectic reduction

w proj
v T3 N
— = ot ~ Troy-

T Jhol
e
5.8. Structures associated with isotropic subspaces of Jacobi fields

We stress in this section some technical results required to prove Lemma 5.4 in a manner that the reader
can skip the proofs in this section without a further damage in the comprehension of this lemma and its
proof.

More precisely we are going to generalize some aspects of the holonomy type Jacobi fields present in
Example 5.3 to any isotropic subspace Z of a given Jacobi triple (E, D, R). Two structures associated with a
7 will be explored, the Z-transverse Jacobi fields and the Z-Riccati operators. Although this generalization
seems futile it will be quite useful in the proof of Lemma 5.4 where the choice of a specific isotropic subspace
7 is the key idea of the proof.

5.83.1. Horizontal bundle and transverse Jacobi fields
We start with a Lemma that describes the vertical bundle associated with an isotropic subspace Z.

Lemma 5.4. Let T C J be an isotropic subspace. Then

(a) (Singular instants) The set {t € I | Z? # {0}} C I is discrete.
(b) (Vertical bundle) The set

V=] z(t) & D(Z)(t)

tel

is a vector subbundle of E with rank equal to the dimension of T.

Proof. The proof is similar to the proof presented in Lemma 3.3 of [3]. O



M.M. Alexandrino et al. / Differential Geometry and its Applications 93 (2024) 102106 17

Following the previous lemma, given an isotropic subspace Z, the set
Ir={tel|Z)={0}} (5.2)

will be called the set of Z-regular instants and in a logical contrast his complement will be called the set of
Z-singular instants (item (a)).

Furthermore the item (b) of the lemma associates Z to a vector subbundle VZ C E which will be called
the wvertical subbundle (associated with Z) and its orthogonal complement HZ will be called horizontal
subbundle (associated with 7). The names of this subbundles are inspired by Example 5.3. When there is
no risk of confusion, the spaces VZ and H? will be simply denoted by V and H, respectively.

It is immediate from the item (b) that for each ¢ € Iz we have Z(t) = V4. In particular for any Lagrangian
subspace £ we have L(t) = E; for all t € I, by dimension issues.

Relatively to the decomposition £ = V & H we denote the horizontal projection by mg and the horizontal
components of the operators D and R by Dy and Ry := (R|g) i.e., the H-component of the restriction of
R to H. To deal with mixed components of the covariant derivative we define the tensor A : I'(E) — I'(E)
as

A(X) = (DXV)T +(DX™)Y,

cf. the definition of O’Neill tensor in Example 5.3.
It is straightforward to see that A is in fact a C°°(I)-homomorphism. Also A has the remarkable property
that Ay = —A%;, which is proved in [3] and as a consequence

Ay =AvAy = —A Ay (5.3)
is self-adjoint nonpositive operator.
Proposition 5.5 (transverse Jacobi equation). Let T C J be an isotropic subspace. Then

(a) (H,Dy, Ry — 3A2%|y) is a Jacobi triple.

(b) Ker(mul|zw) =Z and ma(Z%) = Jz, where Jz is the space of Jacobi fields associated to (H, Dy, Ry —
3A%|g).

(¢) ™1 : I¥ /T — Jz is a symplectic isomorphism.

Proof. The item (a) is immediate, once A%|g is self-adjoint. Then we proceed with the proof of items (b)
and (c).

(b) First we are going to prove that Ker(my|z«) = Z. It is easy to check that Ker(my|ze) D Z so we
are going to concentrate in prove that Ker (my|z«) C Z. Given [J] € Ker(myu|z«) the vector subspace
7 =T + RJ is isotropic (since J € Z%) and for any Z,Z-regular ¢t € T
. ) ;.. = (xx) .. () ..
dim(Z 4+ RJ) = dim(Z(t)) =" dim(Z(t)) = dim(Z) (5.4)
where the equality (%) follows from the fact that ¢ is regular and the equality (xx) follows from the fact

that J € Ker(my), i.e., J(t) is vertical. Eq. (5.4) implies that J € 7.
Now we are going to prove that mg(Z¥) = Jz. Note that it suffices to prove that 7y (Z%) C Jz since

rank (g |ze) = dim (Z%) — dim (Ker (7|z)) = 2dim (H).
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Also note that:

Claim Given J € I% there exists J € Z* so that

(1) J(to) = JH (o), where ty is a T-regular time.

2) [J] = [J], ie., 7u(J) = 7 (J).

In fact, since ¢ is Z-regular, we have Z(ty) = V4, and there exists J € T such that J(to) = jv(to). Set
J:=J—JeI% Clearly [J] = [J] and J(to) = J(to) — J(to) = J¥ (to), and this concludes the proof of
the claim.

Fix a Z-regular tg € I, uy, € Hy,, J € I such that J(to) € Hi,, X € I'(H) Dp-parallel such that
X (to) = ut,. Due to the above claim, in order to prove that m(Z*) C Jz it suffices to prove Eq. (5.5)
below.

(D3I (to), uy ) = — (R — 3A%| ) J (to), uey ) - (5.5)
Let us accept for a moment the following two equations that we are going check later:

(J(to), D> X (to)) = (J(to), A*(X)(to))- (5.6)
(DI)Y (to),v) = (A* (T (t)),v) Vv € V. (5.7)

Replacing Eq. (5.6) and Eq. (5.7) in the equation below (evaluated at t = ¢y) we conclude the desired
Eq. (5.5).

(D, X) = (17, )"
= (J,.X)"
=(D*J,X)+2(DJ,DX) + (J,D*X)
= (- RJX>+2<DJ( X)) +(J,D*X)
= ((=RH", Xy +2((DJ)V,(AuX)) + (J,D*X).

We now check Eq. (5.6).

Finally we check Eq. (5.7). Consider J € Z so that J(to) = v € V,,

(¢) Fix a Z-regular to € I, [J1],[J2] € Z% such that Ji(to), J2(to) € Hy, and X1, Xs € I'(H) Dy-parallel

such that Xi(to) = Ji(to) for i = 1, 2. Then
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w([J1], [J2]) = (DJi(to), X2(to)) — (X1 (to), DJ2(to))
(I, X2) = (x1,75")) (o)

= (DuJ{ (to), X2(to)) — (X1(to), DuJs (to))
:WI(J1 7J2 )s

where wr is the symplectic form associated to (H, Dg, Ry — 3A%|g). O

The space Jr of Jacobi fields associated with the Jacobi triple (H, D, Ry — 3A2|y) will be called the
space of I-transverse Jacobi fields. As well as J, the set of transverse Jacobi fields possess a symplectic
form wz (see Section 5.1). It is quite useful to mention that the Lagrangian subspaces of (Jz,wz) have a
nice description which relates them to the Lagrangian subspaces of 7. This is the content of the subsequent
corollary which follows as a consequence of the item (c) of the previous proposition.

Corollary 5.6 (transverse Lagrangian subspaces). The map
{LeANT)|TCLY}> L—mu(L/T) e A(T7)
s a bijection.

Remark 5.7. A geometric view of the transverse Jacobi vector fields, in a particular case, could be drawn
from Example 5.3. Given a Finsler submersion 7 : M — B and a horizontal geodesic ~ it was presented in
that example a isomorphism between the symplectic reduction j$r°j / J$Ol (quotient between projectable
Jacobi fields and holonomy Jacobi fields) and the space Jro, of Jacobi fields along the projected geodesic.
Then from item (c) of the previous proposition, the space of j,s“’l—transverse Jacobi fields is isomorphic to
the Jron-

5.3.2. Riccati operators

Let £ C J be a Lagrangian subspace. Then for each ¢t € I the linear operator SF : E; — F; given by
SE(ug) := DJ(t), where J € L is such that J(t) = uy, is well defined and self-adjoint, see [6]. Therefore it
induces a C*°(Iz)-endomorphism in I'(Ey, ), the Riccati operator (associated with £), which will be denoted
by S~.

Lemma 5.8. Assume that Iz = R. Let £ € O(FE) be a D-parallel orthonormal frame. Then

(a) [S%)¢ is a solution of the Riccati differential equation (in the space of symmetric matrices M™ (R))
X'+ X?+[R]e =0. (5.8)

Moreover Ker (S* — D) = L.

(b) Given X : Ix C I — M¥™(R) a solution of Eq. (5.8) and denoting by SX the C>(Ix)-endomorphism
in T(E|r,) characterized by [SX]¢ = X, the subspace L = Ker(S* — D) C J is Lagrangian and
SE = 8X.

Proof. (a) It is immediate to see that ST = D in £ from which follows that
—[Rle[J]e = [D*J]e = [D(ST)]e = [S]e[J)e + [Sle[DT]e.

Then the fact that £(t) = E, for all t € Iz and the item (a) of Lemma 5.4 concludes the proof of this
item.
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(b) Since X is symmetric we have that S¥ is self-adjoint so Ker(S¥X — D) is isotropic. Furthermore
dim (Ker (S¥ — D)) = rank (E) (since S — D is a differential operator of order 1). Then Ker (SX — D)
is in fact Lagrangian. O

Corollary 5.9. Assume that Iz = R. The function Iy >t — tr(SF) € R is a solution for the following
Riccati equation

g +a®+r=0
where r: I C R — R 4s given by r = tr(R) + (tr(Sﬁz) — tr(S%)?).

The previous lemma creates, for a fixed D-parallel orthonormal frame &, a bijection between the La-
grangian Grassmannian A(J) (see Eq. (5.1)) and the space of solutions of the Riccati differential equation
X"+ X? + [R]¢ in the space of real symmetric matrices.

Various comparison result related to this type of Riccati differential equation was presented in [4]. Here we
state a more weak result which will be useful for the proof of Wilking’s decomposition lemma (Lemma 5.11).

Proposition 5.10. Let £ C J be a Lagrangian subspace. If Iz = R and tr(R) > 0, then tr(R) = 0 and S*
is identically 0.

Proof. For the sake of completeness, let us briefly review the idea of the proof extracted from the proof of
Theorem 1.7.1 of [6].

Define r: I CR — R by r = tr (R) + (tr (552) — tr(S%)?), as well as in Corollary 5.9. Since tr(R) >0
(by hypothesis) and in general tr(552) > tr(S%)?%, both summands in the definition of 7 are nonnegative
and in particular » > 0. We state that in this case tr(S*) = 0. Suppose by contradiction that tr(S*) # 0
or more specifically there exists tg € Iz such that tr(Sé) ) # 0. Without loss of generality, assume that
to = 0. Then t — tr(SF) is a solution of the differential equation z/(¢) + z(¢)? + r(t) = 0 with a non null
initial condition zo = tr (S£) which implies that lim, , - tr(Sf) = —oo, which is a contradiction. Finally

ED)

Corollary 5.9 implies that = 0 and by the definition of 7 we have that tr(R) = 0 and tr(Sﬁz) = tr(9%)?
which occurs if only if $* = Ltr(S%)Id. Then S =0. O

Following what was presented in the previous section, given a isotropic subspace Z C J, we can associate
a Riccati operator S*7 to any Z-transverse Lagrangian subspace L7 (i.e. a lagrangian subspace of Jz).
Furthermore, by Corollary 5.6, S“Z can be associated with a Lagrangian subspace £ C J, such that £ D> 7.

The Riccati operator S*Z will be called a Z-transverse Riccati operator (associated to £7) and the
Lemma 5.8 and Proposition 5.10 holds to this type of Riccati operator either.

5.4. Wilking’s decomposition lemma

We are finally ready to enunciate and prove the Wilking’s decomposition lemma. It is worth to mention
that, as noted at the beginning of the Section 5.3, the central idea of the proof of this lemma is the choice
of the following specific isotropic subspace

Z =spang{J € L | J(t) =0 for some t € R}
where L is a fixed Lagrangian subspace of a given Jacobi triple.

Lemma 5.11 (Wilking’s decomposition). Let (E, D, R) be a Jacobi triple, such that the base of E is R and
R is nonnegative. Then
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L = spang{J € L] J(t) =0 for some t e R} @ {J € L | J is parallel},
for all L € A(T).

Proof. Define
T :=spang{J € L ]| J(t) =0 for some ¢t € R}. (5.9)

It is immediate that Z C J is isotropic subspace of Jacobi fields. Then denote k = dim (Z) and consider
V and H the vertical and horizontal subbundles of E induced by Z. Also denote by my the horizontal
projection whit respect to the decomposition E =V @& H and by L1 = ny (L) = 7y (L/Z) the Z-tranversal
Lagrangian subspace induced by Z which is explicitly described by this

Lr={J" egr|TeL}

where J7 is the space of Z-transverse Jacobi fields.
It is immediate that Z C J is isotropic subspace of Jacobi fields so that by Proposition 5.5 we have

LmTITBL/I~=T®Lr.

Then it suffices to prove that £z = {J € L | J is parallel}. Note that £z D {J € £ | J is parallel}. In fact
for each J € £ parallel and J € T we have that (J,.J)' = (D.J, J) 4 (J, D.J) = 2(D.J,J) = 0 and consequently
(J,J) =0 i.e. J is horizontal.

In what follows we prove that L7 C {J € £ | J is parallel} or equivalently that J is D-parallel Jacobi
field in £ for all J € L. First we need to prove the next two claims.

Claim A. I-, = R and the Z-transverse Riccati operator S~7 is identically 0.

Proof. First note that
I={JeLl]|J(t)eV, forsome t € R}. (5.10)

In fact, if J(t) € V; for some t € R, there exists J; € Z and Jo € Z? (i.e. Jo(t) = 0) such that J(t) =
J1(t) + DJa(t) (see item (a) of Lemma 5.4). By multiplying both sides of the equation by D.J;(t) and using
the fact that w(J, J2) = w(J1, J2) = 0 we can infer that || DJ2(t)||> = 0. We conclude that J — J; is a Jacobi
field in £ such that (J — J1)(t) = 0 and by the definition of Z (see Eq. (5.9)) J — J1 € T or equivalently
J € Z. The other inclusion follows from the fact that each J € T is vertical.

Now take a L-regular instant to € R and Jy,- -+, J,—j € £ such that {J (t), -+, JH , (to)} C Hy, is a
base. Then {Jf .-+ JH  }is a frame of H. In fact for each t € R if Y. \;JH(t) = 0 then Y \;J; € T (by
Eq. (5.10)) which implies that >" \;J (to) € Hy, N'V;, = {0} and follows that \; = 0.

Finally, since H has a global frame of the form {J{,--- | JH  } we conclude that spang {J{,--- , JH ,} =
Lz and consequently £7(t) = H; which by definition of Lz-regular instants means that I, = R (see eq. (5.2
and remember that the total space for Z-transverse Jacobi fields is H).

Additionally, since R is nonnegative, Proposition 5.10 implies that S*Z = 0.

Claim B. Ry, A = 0.
Proof. Since S“Z = 0 (see Claim A), it follows by the transverse version of Riccati equation, i.e. (S*%)" +

(S£1)2 + (R — 3A2%|g) = 0 (see Eq (5.8)), that Ry = 3A2|y. This equation together with Eq. (5.3) imply
that VX
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(RuX,X) = (3A%|g X, X)
=-3(A5ArX,X)

=—3(ApX,AxX)

Therefore, since by hypothesis Ry is nonnegative, we infer that Ry = 0 and hence A = 0.

Now we are going to prove that J is D-parallel for all J € £. Indeed J¥ is Dy-parallel since Dy JH =
SEz JH = ( (see Claim A and item (a) of Proposition 5.8) which means that (D.J)# = 0. The nullity of
the vertical component of DJ¥ follows from the fact that (DJ?)V,J) = (AJH J) =0 for all J € T.

Now we proceed with the proof that J is a Jacobi field. Since J is D-parallel it suffices to prove that
RJH = 0. By R self-adjointness and J* D-parallelism, for each J € Z, follows that

(RIT)Y,J) = (RI".])
= (J",RJ)
= (J",-D*J)
=—(J7,DJy
= ()"
=0.

Then by Claim B we conclude that RJ¥ = (RJH)V + RgJH = 0.
Finally we finish with the proof that J¥ € L. Indeed it is immediately from J¥ D-parallelism that
w(JH, J)y = —(JH J) = —(JH, JHY = 0 for all J € £ which implies that J? € LY = L. O

As a direct consequence of Wilking’s decomposition lemma, we can infer Proposition 4.2.
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