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In this paper, we discuss how to travel along horizontal broken geodesics of a 
homogeneous Finsler submersion, i.e., we study, what in Riemannian geometry was 
called by Wilking, the dual leaves. More precisely, we investigate the attainable sets 
Aq(C) of the set of analytic vector fields C determined by the family of horizontal 
unit geodesic vector fields C to the fibers F = {ρ−1(c)} of a homogeneous analytic 
Finsler submersion ρ : M → B. Since reverse of geodesics don’t need to be geodesics 
in Finsler geometry, one can have examples on non compact Finsler manifolds M
where the attainable sets (the dual leaves) are no longer orbits or even submanifolds. 
Nevertheless we prove that, when M is compact and the orbits of C are embedded, 
then the attainable sets coincide with the orbits. Furthermore, if the flag curvature 
is positive then M coincides with the attainable set of each point. In other words, 
fixed two points of M , one can travel from one point to the other along horizontal 
broken geodesics.
In addition, we show that each orbit O(q) of C associated to a singular Finsler 
foliation coincides with M , when the flag curvature is positive, i.e., we prove 
Wilking’s result in Finsler context. In particular we review Wilking’s transversal 
Jacobi fields in Finsler case.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

Given a Riemannian submersion ρ : M → B and the Riemannian foliation F = {ρ−1(c)}c∈B , we can 
associate to it the so called dual foliation F# = {L#

q }, where each leaf of L#
q ∈ F# is defined as the set of 

points x ∈ M that are the end point of a piece-wise smooth horizontal geodesic starting at q.
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In [13] Wilking proved that Sharafutdinov retraction is smooth using the dual foliation of the metric 
retraction onto the soul. He also proved that if the curvature is positive then M coincides with one single 
leaf of F#. In fact this result was proved in the more general context of singular Riemannian foliations.

Dual foliations can also be seen from the point of view of geometric control theory. We can consider the 
set of smooth vector fields C = {�fu}u∈U determined by the family of horizontal unit geodesic vector fields 
�fu, i.e., those whose integral curves are horizontal unit speed geodesic segments. With this approach, L#

q is 
the attainable set Aq(C). Since in Riemannian geometry this controls system is symmetric (if �fu ∈ C then 
−�fu ∈ C), each orbit O(q) coincides with Aq(C), and in particular the leaf L#

q is an immersed submanifold.
When we consider this discussion in the broader context of Finsler geometry, we see a significant con-

ceptual shift. As illustrated in the simple Example 2.25, L#
q = Aq(C) does not need to be a submanifold, 

since it does not need to coincide with the orbit O(q). In fact the set of smooth vector fields C = {�fu} may 
no longer be symmetric.

In this paper, we investigate the attainable set Aq(C) of the set of smooth vector fields C determined by 
the family of horizontal unit geodesic vector fields to the fibers F = {ρ−1(c)} of a homogeneous analytic 
Finsler submersion ρ : M → B.

Theorem 1.1. Let μ : G ×M → M be an analytic Finsler action on an analytic compact Finsler manifold 
M . Assume that G is compact and that the orbits are principal. Let ρ : M → M/G = B be the Finsler 
submersion describing the homogeneous foliation F = {ρ−1(c)} and C = {�fu}u∈U be the set of horizontal 
unit geodesic vector fields associated to the submersion ρ. Then

(a) If the orbit O(q) is embedded then it coincides with the attainable set Aq(C).
(b) If (M, F ) has non negative flag curvature and the flag curvature at one point q0 is K(q0) > 0 then 

Aq(C) = O(q) = M for each q ∈ M .

With this nice and simple result we hope to stress to an audience of mathematicians with good knowledge 
on Riemannian geometry, how natural is the relation between geometric control theory and Finsler geometry. 
In particular, we try to write this note in a self contained presentation. Theorem 1.1 also motivates natural 
questions that could be explored in future research. The first one is how to generalize it, dropping for 
example the condition of homogeneity of the submersion (see Remark 3.3) or even considering the most 
general situation, i.e., dual foliations of singular Finsler foliation; see [2]. A more involving question is 
whether dual foliations could be used to prove smoothness of class of Finsler submetries, as they were used 
in Wilking’s work in the Riemannian case; see [13].

Item (b) of Theorem 1.1 follows direct from item (a) and from the Proposition 1.2 below, that assures 
(as in the Riemannian case) that the orbits of the set of horizontal unit geodesic vector fields associated to 
a singular Finsler foliation (e.g., partition of M into orbits of a Finsler action) coincide with M when flag 
curvature is positive. Note nevertheless that Proposition 1.2 does not deal with attainable sets, that seems 
to us the main subject of study in the Finsler case.

Proposition 1.2. Let (M, F ) be a complete Finsler manifold with non negative flag curvature and F = {L}
a singular Finsler foliation. Let C = {�fu} be the set of horizontal unit geodesic vector fields of F . Assume 
that there exists a regular leaf Lq so that each point of this leaf has positive flag curvature K > 0. Then the 
orbit O(q) of C coincides with M .

This paper is organized as follows: In Section 2 we review a few facts on geometric control theory 
and Finsler geometry that will be used in this paper. Item (a) of Theorem 1.1 is proved in Section 3. 
Proposition 1.2 (and hence item (b) of Theorem 1.1) is proved in Section 4, accepting a few facts on Wilking’s 
transversal Jacobi fields and the Jacobi triples in Finsler case, that are revised in Section 5. In particular, 
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we hope that the review presented in Section 5 allows Finslerian geometers to come into contact with a tool 
that has been useful in the study of Riemannian submersions and (singular) Riemannian foliations.

Acknowledgment: The authors are thankful to Benigno O. Alves for useful suggestions.

2. Background

2.1. A few facts on geometric control theory

Here we review a few results and definitions on geometric control theory extracted from the classical 
book of Agrachev and Sachkov [1, Chapters 5, 8] and [11,12].

Let N be a manifold and C = {�fu} be a set of smooth (analytic) vector fields everywhere defined, i.e., 
the union of the domains of elements of C is N . This condition will be always used in this paper.

The attainable set of the family C through q is defined as:

Aq(C) = {etk �fk ◦ · · · ◦ et1 �f1(q), ti ≥ 0, k ∈ N, �fi ∈ C}

where et�fi is the flow of �fi ∈ C in instant t. The orbit of the family C through q is

O(q) = {etk �fk ◦ · · · ◦ et1 �f1(q), ti ∈ R, k ∈ N, �fi ∈ C}

Orbits have nice structures as we see in the next result.

Theorem 2.1 (Nagano-Stefan-Sussmann). For a given set of vector fields C everywhere defined on a smooth 
manifold N , the partition {O(q)}q∈N is a singular foliation, i.e.,

(a) each orbit is an immersed submanifold;
(b) for each vq ∈ TqO(q) there exists a vector field �v on N so that �v(q) = vq and �v(p) ∈ TpO(p), ∀p ∈ N .

Recall that when the leaves of a singular foliation have the same dimension, the singular foliation is called 
regular foliation or just foliation.

Set Lie(C) := Span{[�f1, [. . . , [�fk−1, �fk] . . .]], �fi ∈ C, k ∈ N}. With this concept we can establish conditions 
under which the orbit coincides with the manifold.

Corollary 2.2 (Rashevsky-Chow). Let N be a connected manifold and C a set of vector fields. If Lieq(C) =
TqN, ∀q ∈ N , then N = O(q), ∀q ∈ N .

A submodule V (e.g., V = Lie(C)) is locally finitely generated over C∞(N), if for each point q, there 
exists a neighborhood U of q and vector fields �v1, · · · , �vk of V with domain containing U so that V|U =
{
∑k

i=1 ai�vi|ai ∈ C∞(U)}.

Remark 2.3. if a module V is generated by analytic vector fields, it is locally finitely generated. This fact 
makes it possible to use relevant results on attainable sets and it is the main reason why we assume 
analyticity in Theorem 1.1.

Proposition 2.4. Let N be a manifold and q0 ∈ N . If Lie(C) is locally finitely generated over C∞(N), (in 
particular when C and N are analytic) then Lieq(C) = TqO(q0) for q ∈ O(q0) and for all orbits O(q0).

Different from orbits, the attainable sets do not need to be immersed submanifolds. But in the case where 
Lie(C) is locally finitely generated (e.g., C is analytic), they still have some interesting properties.
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Theorem 2.5 (Krener). If Lie(C) is locally finitely generated, then int
(
Aq(C)

)
is dense in Aq(C) ⊂ O(q). 

Here the density is with respect to the topology of O(q). In particular int
(
Aq(C)

)
�= ∅.

Let us now move towards results that will allow us to conclude that Aq0(C) = O(q0) under suitable 
hypotheses.

Definition 2.6. Given a complete vector field �g on N , a point q ∈ N is called Poisson stable for �g if for any 
t0 > 0 and any neighborhood W of q there exists a point x ∈ W and a time t1 > t0 such that et1�g(x) ∈ W . 
The vector field �g is Poisson stable if all points are Poisson stable.

Proposition 2.7 (Poincaré). Assume that N is compact and the flow et�g of a complete vector field �g preserves 
a volume of N . Then �g is Poisson stable.

Definition 2.8. A complete vector field �f tangent to the orbits of C is called compatible with C if Aq(C) is 
dense in Aq(C ∪ �f), with respect to the topology of the orbits.

Proposition 2.9. Assume that Lie(C) is locally finitely generated. If a complete vector field �g ∈ C is Poisson 
stable in the orbit associated to C, then −�g is compatible with C.

Proposition 2.10. Assume that Lie(C) is locally finitely generated. If Aq0(C) is dense in O(q0) then Aq0(C) =
O(q0).

2.2. A few facts on Finsler geometry

In this section, we briefly review a few facts on Finsler geometry and Finsler submersions necessary to our 
paper, most of them extracted from [8], [2], [3] and [5]. A comprehensive introduction to this rich geometry 
can be found in [10].

2.2.1. The metric structure

Definition 2.11. Let M be a manifold. A continuous function F : TM → [0, +∞) is called Finsler metric if

(a) F is smooth on TM \ {0},
(b) F is positive homogeneous of degree 1, that is, F (λv) = λF (v) for every v ∈ TM and λ > 0,
(c) for every p ∈ M and v ∈ TpM \ {0}, the fundamental tensor of F defined as

gv(u,w) = 1
2

∂2

∂t∂s
F 2(v + tu + sw)|t=s=0

for any u, w ∈ TpM is a nondegenerate positive-definite bilinear symmetric form, i.e., an inner product.

In particular, if V is a vector space and F : V → R is a function smooth on V \ {0} and satisfying the 
properties (b) and (c) above, then (V, F ) is called a Minkowski space.

The fundamental tensor satisfies a few relevant properties.

Proposition 2.12. For each v ∈ TM \ {0} we have:

(a) gλv = gv, for all λ > 0;
(b) gv(v, v) = F 2(v);
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(c) gv(v, u) = 1
2

∂
∂sF

2(v+su)|s=0 = L(v)u where L : TM \{0} → T ∗M \{0} is the Legendre transformation;
(d) gv(v, u) ≤ F (v)F (u), for all u ∈ Tπ(v)M .

We can define the length of a smooth piecewise curve γ : [a, b] → M as lF (γ) =
∫ b

a
F (γ′(s))ds. The 

distance from p to q can be defined as d(p, q) = infγ∈Ωp,q
lF (γ), where Ωp,q is the set of curves γ : [0, 1] → M

joining p = γ(0) to q = γ(1). Unlike Riemannian geometry, the distance d(p, q) does not need to be equal 
to the distance d(q, p). But we can still have several important metric geometric concepts from Riemannian 
geometry, as long as we take into account the orientations of the curves involved in the definition of the 
distances. For example, instead of talking about a metric ball, now we have to talk about future balls, i.e. 
B+

r (p) = {x ∈ M | d(p, x) < r}, and past balls, i.e. B−
r (p) = {x ∈ M | d(x, p) < r}.

Since we have a length functional on the space of smooth piecewise oriented curves, we can define a 
geodesic as an oriented curve that locally minimizes the distance. More precisely a curve γ : [a, b] → M

is called geodesic if for each s0 ∈ [a, b] there exists ε > 0 so that d(γ(s0), γ(s)) =
∫ s

s0
F (γ′(t))dt where 

s ∈ [s0, s0 + ε]. Just like in Riemannian geometry, geodesics can also be seen as critical points of energy 
functional γ →

∫ b

a
F 2(γ′(s))ds or as curves with zero accelerations with respect to the (Chern) covariant 

derivative. But before we start to review the concept of Chern connection, let us end this subsection with 
a concrete important example.

Example 2.13 (Randers metric). Let h be a Riemannian metric and �w be a smooth vector field with ‖�w‖ < 1, 
where ‖�w‖ = h(�w, �w)1/2. We define the Randers metric F with Zermelo data (h, �w) by the intrinsic equation:

‖v − F (v)�w‖ = F (v).

In other words, IF
p (ε) = Ih

p (ε) + ε�w(p) where the indicatrix IF
p (ε) is defined as {v ∈ TpM | F (v) = ε}. The 

Randers metric F can also be defined as F = α + β where α is a Riemannian norm and β is a 1-form so 
that ‖β‖α < 1. There is a bijection between (h, �w) and (α, β), but we will not need it in this paper.

We are interested in two properties of geodesics in Randers manifolds that we formulated as follows:

Proposition 2.14. Let F be a Randers metric with Zermelo data (h, �w), where �w is a Killing vector field on 
M with respect to h. Let γ be a unit speed geodesic with respect to h.

(a) Then t → β(t) = et�w ◦ γ(t) is a unit speed geodesic with respect to the Randers metric F .
(b) If γ is a unit speed geodesic starting orthogonal to a submanifold L with respect to the Riemannian metric 

h, i.e. h(γ′(0), v) = 0 for all v ∈ Tγ(0)L, then the unit geodesic β (with respect to F ) is orthogonal to L
with respect to gβ′ , i.e., gβ′(0)(β′(0), v) = 0 for all v ∈ Tβ(0)L.

Remark 2.15. There is also an easy way to produce Finsler actions on Randers spaces. An action μ : G ×M →
M is a Finsler action i.e., F (dμ) = F ) on Randers spaces with Zermelo data (h, �w) if and only if the action 
is isometric (with respect to h) and �w is G invariant, i.e., �w ◦ μg = dμg �w.

2.2.2. Chern connection and Jacobi fields
Let us now review the concept of Chern connection associated with a Finsler metric F as a family of 

affine connections.

Proposition 2.16. Given a vector field �v without singularities on an open set U ⊂ M , there exists a unique 
affine connection ∇v on U (the so called Chern connection) that satisfies the following properties:
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(a) ∇v is torsion-free, namely,

∇v
�f
�g −∇v

�g
�f = [�f,�g]

for every vector fields �f and �g on U ,
(b) ∇v is almost g-compatible, namely,

�f · gv(�g, �w) = gv(∇v
�f
�g, �w) + gv(�g,∇v

�f
�w) + 2Cv(∇v

�f
�v,�g, �w).

Here Cv is the Cartan tensor associated with the Finsler metric defined as:

Cv(w1, w2, w3) := 1
2
∂

∂s
gv+sw1(w2, w3)|s=0

= 1
4

∂3

∂s3∂s2∂s1
F 2(v +

3∑
i=1

siwi)|s1=s2=s3=0

for every p ∈ M , v ∈ TpM \ {0}, and w1, w2, w3 ∈ TpM .

It can be checked that the Christoffel symbols of ∇v only depend on v = �v(p) at every p ∈ M , and not 
on the particular extension. Therefore, the Chern connection is an anisotropic connection. Moreover, it is 
positively homogeneous of degree zero, namely, ∇λv = ∇v for all v ∈ TM \ {0} and λ > 0. One can also 
prove the following property of Cartan tensor:

Cv(v, w1, w2) = Cv(w1, v, w2) = Cv(w1, w2, v) = 0. (2.1)

Let γ : I ⊂ R → M be a piecewise smooth curve and t → �w(t) a vector field without singularities along 
γ, i.e., �w is a section of the pullback fiber bundle γ∗(TM) over I. By considering the pullback of the Chern 
connection ∇w we induce the covariant derivative ∇

w

dt along γ. In particular we have that ∇
w

dt
�f(t) = ∇w

γ′ �f

when �f ∈ X(M).
Now we can give an equivalent definition of geodesic. A smooth curve γ : I ⊂ R → M is a geodesic if 

and only if ∇
γ′

dt γ′(t) = 0.
A geodesic can also been seen as the projection of an integral curve of the (Finsler) geodesic spray. In 

other words, we have a vector field �g (the Finsler geodesic spray) on TM − {0} so that the geodesic γ with 
initial condition γ′(0) = vp ∈ TpM is γ(t) = π

(
et�gvp

)
, where π : TM → M is the canonical projection. We 

say that (M, F ) is a complete Finsler manifold, if the Finsler geodesic spray �g is a complete vector field, i.e., 
its integral curves are defined for all t ∈ R. The Finsler geodesic spray �g has also the interesting property 
that its flow preserves a volume form ω (the so called volume of the Sasaki metric) on TM − {0}, see [10, 
Propositions 5.4.2, 5.4.3].

When we consider a geodesic variation t → γs(t) = γ(s, t) of a geodesic γ, then the variational vector 
field J(t) = ∂

∂sγ(0, t), is called Jacobi vector field along γ. It is characterized by solving the differential 
equation

J ′′(t) + Rγ̇(t)(J(t)) = 0. (2.2)

Here J ′(t) = ∇γ′

dt J and Rv : TpM → TpM is an operator well defined for each p ∈ M and v ∈
TpM \ {0} called Jacobi operator. It can be well defined by properties of isotropic connections; see [3, 
Section 5].
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The flag curvature for v ∈ TM \ {0} and w ∈ Tπ(v)M is defined in analogous way to the sectional 
curvature in Riemannian case.

K(v, w) = gv(Rvw, v)
gv(v, v)gv(w,w) − gv(v, w)2 .

Remark 2.17. There is a natural way to produce Finsler spaces with non negative or positive flag curvature. 
Given a Riemannian manifold (M, h) with nonnegative or positive sectional curvature, the Randers space 
(M, F ) with Zermelo data (h, �w) (where �w is a Killing field of (M, h)) has nonnegative or positive flag 
curvature.

The next proposition provides us with a natural relationship between these well-known concepts in 
Riemannian geometry and their analogues in Finsler geometry.

Proposition 2.18. Let (M, F ) be a complete Finsler manifold and �v be a geodesic vector field on an open 
subset U ⊂ M , let ĝ := g�v denote the Riemannian metric on U induced by the fundamental tensor g and let 
∇̂ and R̂ be the Levi-Civita connection and the Jacobi operator of ĝ, respectively. Then, for any �f ∈ X(U),

(a) ∇̂�f �v = ∇v
�f
�v and ∇̂�v

�f = ∇v
�v
�f ,

(b) R̂�v
�f = R�v

�f .

As a consequence, the integral curves of �v are also geodesics of ĝ, and the Finslerian Jacobi operator and 
Jacobi fields along the integral curves of �v coincide with those of ĝ.

We finish this subsection by recalling the concept of L-Jacobi fields.

Definition 2.19. Let L be a submanifold of a complete Finsler manifold (M, F ) and γ : [a, b] → M a unit 
speed geodesic orthogonal to L at p = γ(a). We say that a Jacobi field J is a L-Jacobi field if

• J(a) is tangent to L;
• Sγ′(a)J(a) = tanγ′(a)J

′(a) where Sγ′ : TpL → TpL is the shape operator defined as Sγ′(u) =
tanγ′(a)∇γ′(a)

u ξ with ξ an orthogonal vector field along L such that ξp = γ′(a) and tanγ′(a) is the 
gγ′(a)-orthogonal projection onto TpL.

Remark 2.20. As proved in [3, Proposition 3.5], a Jacobi field J along γ is a L-Jacobi field if and only if it 
is the variational vector field of a variation of γ by orthogonal geodesics to L.

2.2.3. Finsler submersion

Definition 2.21. A submersion ρ : (M, F ) → (B, F 	) between Finsler manifolds is a Finsler submersion
if dρp(BF

p (0, 1)) = BF�

ρ(p)(0, 1), for every p ∈ M , where BF
p (0, 1) and BF�

ρ(p)(0, 1) are the unit balls of the 
Minkowski spaces (TpM, Fp) and (Tρ(p)B, F 	

ρ(p)) centered at 0, respectively.

The first natural example is to consider a Finsler action μ : G ×M → M (i.e., F (dμg) = F ) where all 
orbits have the same isotropy type, i.e., the isotropy groups Gp = {g ∈ G | μ(g, p) = p} are conjugate to 
each other. Then the projection ρ : (M, F ) → (M/G, F 	) is a Finsler submersion where F 	 is the induced 
Finsler norm on B = M/G.

It is also useful to construct Finsler submersions in Randers spaces starting with a Riemannian submer-
sion.
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Fig. 1. Figure generated by the software geogebra.org illustrating Lemma 2.22, i.e., a Randers submersion that was produced starting 
with the trivial Riemannian submersion ρ : R3 → R2 defined as ρ(x) = (x1, x2) and wind W = (0, 0, 14 sin2(x1) + 1

4 ). The horizontal 
unit speed geodesic is γ(t) = (t, 0, 3t8 − sin(2t)

16 ). Note that the union of normal vectors to a tangent space of the fiber is a (normal) 
cone, and no longer a normal subspace as it was in the Riemannian case. As remarked the geodesics of a Finsler submersion are 
orthogonal to the leaves and hence tangent to the normal cones ν(L).

Lemma 2.22. Let ρ : (M, h) → (B, h	) be a Riemannian submersion, �w	 a vector field on B and �w a vector 
field in M that is ρ-related to �w	, i.e., dρ ◦ �w = �w	 ◦ ρ. Then ρ : (M, R) → (B, R	) is a Finsler submersion, 
where R is the Randers metric with Zermelo data (h, �w) and R	 is the Randers metric with Zermelo data 
(h	, �w∗). See Fig. 1.

Given the Finsler foliation F = {L} with leaves L = ρ−1(c), we say that a geodesic γ : I ⊂ R → M is 
horizontal if for each t ∈ I the vector γ′(t) is an orthogonal to the leaves L ∈ F , i.e., gγ′(t)(γ′(t), w) = 0 for 
all w ∈ Tγ(t)L.

In the same way as in Riemannian geometry, in Finsler geometry we have the lift property of geodesics.

Proposition 2.23. Let π : (M, F ) → (B, F 	) be a Finsler submersion. Then an immersed curve on B is a 
geodesic if and only if its horizontal lifts are geodesics on M . In particular, the geodesics of (B, F 	) are 
precisely the projections of horizontal geodesics of (M, F ).

Once we fix a geodesic vector field, we can reduce the study of Finsler submersions to Riemannian 
submersions.

Proposition 2.24. Let π : (M, F ) → (B, F 	) be a Finsler submersion. Let v	 be a geodesic vector field in 
some open subset U	 of B. Then the horizontal lift �v of v∗ is a geodesic vector field on U = ρ−1(U	) and the 
restriction ρ|U : (U, gF�v ) → (U	, gF

�

v∗ ) is a Riemannian submersion, where gF and gF
� are the fundamental 

tensors of F and F 	, respectively.

We finish this subsection by presenting two simple examples illustrating why the compactness hypothesis 
of Theorem 1.1 is important.

Example 2.25. In this example we present an attainable set and orbit of the set of horizontal unit geodesic 
vector fields of a Finsler homogeneous analytical submersion on a non compact space, see Fig. 2. Consider 
the Riemannian submersion ρ : (R2, h2) → (R, h1) where ρ(x1, x2) = x1 and hn is the Euclidean metric on 
Rn. By Lemma 2.22, taking �w = (0, 12 ), we have that ρ : (R2, R) → (R, h1) is a Finsler submersion where R
is the Randers metric with respect to the Zermelo data (h2, �w). Let C = {�f1, �f2} be the set of vector fields 
where �f1 = (1, 12 ) and �f2 = (−1, 12 ). The integral curves of these vector fields are horizontal geodesics of the 
Finsler submersion ρ : (R2, R) → (R, h1). It is easy to see that A(0,0)(C) is a cone with its interior. More 
precisely A(0,0)(C) = {x ∈ R2 | 12x1 ≤ x2, 0 ≤ x1} ∪ {x ∈ R2 | − 1

2x1 ≤ x2, x1 ≤ 0}. Also it is clear that 
O
(
(0, 0)

)
= R2. In particular O

(
(0, 0)

)
�= A(0,0)(C).
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Fig. 2. Figure generated by the software geogebra.org illustrating Example 2.25.

Example 2.26. Let π : R2 → T 2 = R2/(Z × Z) be the canonical projection of the Euclidean plane onto 
the torus and the Finsler submersion ρ : (R2, R) → (R, h1) defined in Example 2.25. Since the fibers of 
the submersion ρ and the vector field �w are invariant by the action of Z × Z, the Finsler submersion ρ
projects to a Finsler submersion ρ	 : (T 2, R	) → (S1, h1). Here R	 is the Randers metric with Zermelo 
data (h2, w	) where the h2 is flat metric and the wind w	 is ρ-related with �w, i.e., w	 ◦ π = dπ ◦ �w. Define 
f	
i to be π-related to �fi. The integral curves of f	

i are horizontal geodesics of ρ	. Set C	 = {f	
1 , f

	
2 } and 

p	 = π((0, 0)). Then it is not difficult to check that Ap�(C	) = O(p	).

3. Proof of item (a) of Theorem 1.1

Let N ⊂ T 1M be the union of unit cone bundle of the fibers of ρ, i.e., N := ∪x∈Mν1
x(Lx) for Lx =

ρ−1(ρ(x)). It follows from Alvarez Paiva and Duran [8] that N is a compact embedded submanifold of the 
unit bundle T 1M and that the diagram below commutes

N T 1B

M B

πM

ρN

πB

ρ

(3.1)

where ρN = dρ|N and πM and πB are the canonical projections. Also note that N is invariant by the 
geodesic flow et�g and

ρN ◦ et�g = et
�b ◦ ρN (3.2)

where et�b is the geodesic flow in T 1B.

Remark 3.1. Note that the isometric action μ : G ×M → M induces an action μ̃ : G ×N → N as μ̃g = (μg)∗
and the orbits of the action induce the leaves of the foliation F̃ := {L̃} where L̃ = ρ−1

N (c).

Lemma 3.2. The Finsler geodesic spray �g restricted to N is Poisson stable.

Proof. In order to prove that the flow is Poisson stable, it suffices to check that

|et�g(W )| = |W |, ∀t > 0, (3.3)

where W is any given proper relative compact neighborhood and | · | is a fixed volume on N that will be 
constructed below, recall Proposition 2.7.
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The first step in our construction is to define a metric on the fibers of ρ : M → B = M/G so that, for 
each basic vector field ξ, the end point map ηξ : G(x) → G(y), defined as ηξ(x) = expx(ξ), turns to be an 
isometry.

Since all orbits are principal, the slice theorem implies that the map x �→ gx ⊂ Gk(g) is smooth (where 
Gk(g) is the Grassmannian of g). For a given metric 〈·, ·〉 on g, we can find a subspace Vx orthogonal to gx, 
i.e., g = Vx ⊕ gx, where g and gx are the Lie algebra of G and the isotropy group Gx respectively. Now we 
define the metric g̃ along the orbits that transform the isomorphism dμx : (Vx, 〈·, ·〉) → (TxG(x), ̃gx) into an 
isometry.

Since the isotropy groups along (minimal) horizontal geodesics are the same, we have that Vx = Vy, where 
y = ηξ(x). Note that dηξ�v(x) = �v(y) where �v is the vector field along the orbits defined as �v(x) = dμxv for 
v ∈ V = Vx = Vy. These facts allow us to conclude that the map ηξ : G(x) → G(y) is an isometry.

Now we can define a volume form ωG (with respect to the metric g̃) along the fibers of ρ : M → B = M/G. 
Note that this form is invariant by the end point map, i.e., η∗ξωG = ωG. The metric g̃ as well the volume 

form ωG can also be defined on the fibers {L̃} of ρN : N → T 1B and we will use the same notation. Note 
that if et�g : L̃x → L̃y, then (et�g)∗ωG = ωG. By another abuse of notation, consider ωG an extension of the 
previous ωG to a k-form in N .

We can define the volume form as ω = ωG ∧ ρ∗NωB where ωB is the volume form with respect to 
the Sasaki metric of T 1B. Recall that et�b preserves the volume form for the Sasaki metric of T 1B and 
(et�g)∗ωG|L̃x

= ωG|L̃y
. These facts together with the fact that ρ∗NωB vanishes vectors tangent to fibers allow 

one to check that:

(et�g)∗ω = ω. (3.4)

Defining |W | =
∫
W

ω, we conclude that Eq. (3.4) implies Eq. (3.3) and this concludes the proof of the 
lemma. �
Remark 3.3. Note that the fact that Finsler geodesic spray preserves volume on TM does not directly imply 
that its restriction to a submanifold of TM preserves volume of this submanifold. This is one of the reasons 
why we are assuming that the submersion ρ : M → B is homogeneous.

Now we are going to define a set of vector fields C̃ on N that will be related to our original set of vector 
fields C on M as follows:

(i) πM

(
Ãq̃(C̃)

)
= Aq(C),

(ii) πM

(
Õ(q̃)

)
= O(q),

where πM (q̃) = q. Therefore, once we have proved that Ãq̃(C) = Õ(q̃) (see Eq. (3.5) below) we will be able 
to conclude that Aq(C) = O(q) and hence to finish the proof of item (a) of Theorem 1.1.

Consider a set of vector fields C1 = {�fu} with the following properties: �fu spam the tangent spaces of 
the fibers of πM : N → M , C1 is symmetric (i.e. if �fu ∈ C1 then −�fu ∈ C1) and �fu are μg-related, i.e., 
�fu ◦ μ̃g = dμ̃g

�fu. Now we complete C1 with the geodesic spray (restricted to N), i.e., C̃ = {�g} ∪C1. Note that 
the projection of the integral curves of �f0 = �g corresponds to the horizontal geodesics and the projection 
of the integral curves of �fu (u �= 0) measure how it breaks, and in particular πM (γ2 ∗ δu ∗ γ1) is a broken 
horizontal unit speed geodesic, where γi is a integral line of �g and δu is an integral line of �fu. The attainable 
set and the orbit of the family C̃ through q̃0 are denoted by Õ(q̃0) and Ãq̃0(C̃). Using this one can check 
properties (i) and (ii) stated above.

Lemma 3.4. Consider Õ(q̃) the orbit of the family C̃ through q̃ defined above. Then
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(a) Each orbit Õ(q̃) meet all the fibers of ρN .
(b) The orbits of {Õ(q̃)} have the same dimension (i.e., {Õ(q̃)} is a regular foliation).
(c) If the orbits O(q) in M are embedded then the orbits Õ(q̃) in N are embedded as well.
(d) If the orbits Õ(q̃) in N are embedded, then �g restricts to each orbit is Poisson stable.

Proof. Item (a) Fix a point q̃0 ∈ N and consider q̃1 ∈ N . Let γB : [0, r] → B be a piecewise broken unit 
geodesic so that γ′

B(0) = ρN (q̃0) and γ′
B(r) = ρN (q̃1). By lifting horizontally via ρ and then lifting via 

πM (see (3.1)) we define γN : [0, r] → N as the lift of γB with γ′
N (0) = q̃0. Set γ′

N (r) = q̃2. Note that 
ρN (q̃2) = ρN (q̃1) and hence that q̃2 ∈ L̃q̃1 . Since γN ⊂ Õ(q̃0), we have concluded that q̃2 ∈ Õ(q̃0) ∩ L̃q̃1 and 
this finishes the proof of item (a).

Item (b) Recall that the action μ : G ×M → M induces an action μ̃ : G ×TM → TM as μ̃g = (μg)∗ and 
the orbits of the action μ̃ induce the leaves of F̃ . For a fix leaf L̃q̃, note that μ̃g(Õ(q̃)) = Õ(μ̃g(q̃)). Since μ̃g

is a diffeomorphism, the orbits that meet L̃q̃ have the same dimension. On the other hand, it follows from 
item (a) that all orbits meet F̃ . Therefore all orbits have the same dimension.

Item (c) Since πM is a submersion (consequently transverse to O(p)) it suffices to prove that π−1
M (O(p)) =

Õ(up), for all up ∈ N . The inclusion π−1
M (O(p)) ⊃ Õ(up) follows immediately from the fact that 

πM (Õ(up)) = O(p).
In order to prove that π−1

M (O(p)) ⊂ Õ(up) consider vq ∈ π−1
M (O(p)). Then q = πM (vq) ∈ O(p) which 

means that p and q are linked by a broken curve γ = γn ∗ · · · ∗ γ1 where each γi segment is either unit 
horizontal geodesic or a reverse of a unit horizontal geodesic.

Set γ̃i(t) := (γ′
i(t))γi(t) ∈ Tγi(t)M if γi a unit segment of geodesic and set γ̃i(t) := (−γ′

i(t))γi(t) ∈ Tγi(t)M

if γi is a reverse segment of geodesic. Let δ1 be an integral line of C1 connecting up with γ̃1(0), δi be an 
integral line of C1 joining γ̃i−1(ri−1) with γ̃i(ri) and δn+1 be an integral line of C1 joining γ̃n(rn) with vq. 
Then δn+1 ∗ γ̃n ∗ δn ∗ γ̃n−1 ∗ δn−1 ∗ · · · ∗ γ̃1 ∗ δ1 is a broken curve connecting up with vq, where each segment 
is either a integral line of C̃ or a reverse of a integral line of C̃ which means that vq ∈ Õ(up).

Item (d) For a fixed q̃0 ∈ N consider a small relatively compact trivial F̃-neighborhood V0 of q̃0 so that 
V0 ∩ Õ(q̃0) has only one connected component. We want to check that for each t0 there exists t1 > t0 and 
a point x̃ ∈ V0 ∩ Õ(q̃0) so that x̃1 = et1�g(x̃) ∈ V0 ∩ Õ(q̃0).

We claim that there exists a relatively compact neighborhood V1 ⊂ V0 and a neighborhood W of e ∈ G

so that:

• if g ∈ W then g−1 ∈ W and μg−1(V1) ⊂ V0 and μg(V1) ⊂ V0;
• if ỹ ∈ V1 then there exists x̃ ∈ Õ(q̃0) ∩ V1 so that μg(x̃) = ỹ, with g ∈ W .

By Lemma 3.2, for each t0, there exists ỹ ∈ V1 and t1 > t0 so that et1�g(ỹ) = ỹ1 ∈ V1. Consider x̃ ∈ V1∩Õ(q̃0)
so that ỹ = μg(x̃). Since μg ◦ et1�g = et1�g ◦ μg, we have ỹ1 = et1�g

(
μg(x̃)

)
= μg

(
et1�g(x̃)

)
and hence x̃1 :=

μg−1(ỹ1) = et1�g(x̃). Once μg−1(V1) ⊂ V0 and V0 ∩ Õ(q̃0) has only one connected component, we infer that 
x̃1 ∈ V0 ∩ Õ(q̃0) as we wanted to prove. �

We can now end the proof of item (a) of Theorem 1.1. Item (d) of Lemma 3.4 implies that �g restricts 
to each orbit is Poisson stable. From Proposition 2.9 −�g is compatible with C̃, i.e. Ãq̃(C̃) is dense in 
Ãq̃(C̃ ∪ {−�g}) = Õ(q̃). Therefore, it follows from Proposition 2.10 that

Ãq̃(C̃) = Õ(q̃). (3.5)

The above equation finishes the proof as remarked before.
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4. Proof of Proposition 1.2 and item (b) of Theorem 1.1

Let us start by recalling the definition of singular Finsler foliation (SFF for short), a class of singular 
foliation that includes among other examples, the partition of M into orbits of a Finsler action; for properties 
and more examples of SFF see [3] and see [2].

Definition 4.1 (SFF). A partition F = {L} on a complete Finsler manifold (M, F ) is called a singular Finsler 
foliation if it satisfies the following two conditions:

(a) F is a singular foliation, i.e., for each p ∈ M , each basis {Xi} of the tangent space TpLp of the leaf Lp

through p, can be extended to vector fields { �Xi} linearly independent, tangent to the leaves of F near 
p.

(b) F is Finsler, in other words, if a geodesic γ : (−ε, ε) → M is orthogonal to the leaf Lγ(0) (i.e. 
gγ′(0)(γ′(0), v) = 0 for each v ∈ Tγ(0)L) then γ is horizontal, i.e., orthogonal to each leaf it meets.

We also need to present a result that is a direct consequence of Lemma 5.11, a version of Wilking’s lemma 
for Finsler geometry.

Proposition 4.2. Let (M, F ) be a complete Finsler manifold with non negative flag curvature along geodesic 
γ : R → M orthogonal (at its initial point) to a submanifold L ⊂ M . Denote J L

γ the set of all L-Jacobi 
fields along γ. Then

J L
γ = spanR{J ∈ J L

γ | J(t) = 0 for some t ∈ R} ⊕ {J ∈ J L
γ | J is parallel}.

As explained in the introduction, item (b) of Theorem 1.1 follows direct from item (a) of Theorem 1.1
and Proposition 1.2. Therefore let us prove this proposition in this section.

Let γ : R → M be a unit speed geodesic orthogonal to a regular leaf L at γ(0) (i.e., γ is an horizontal 
geodesic). First we want to check that the first summand of the decomposition presented in Proposition 4.2
is tangent to the orbit O(γ(0)). To prove this it suffices to prove the next lemma.

Lemma 4.3. If a Jacobi field J ∈ J L
γ has zero at t0 (i.e., J(t0) = 0) then it is tangent to the orbit O(γ(0)).

Proof. Let t → γs(t) = γ(s, t) be a variation of horizontal unit geodesics orthogonal to Lp with p =
γ(0, 0) = γ(0) and so that J(t) = ∂

∂sγ(0, t). Consider a basis {Xi} of Tγ(t0)Lγ(t0). It follows from item (a) of 
Definition 4.1 that these vectors can be extended to vector fields { �Xi} that are linearly independent. From 
item (b) of Definition 4.1, we have that 0 = gγ′

s
( �Xi, γ′

s). By differentiating this equation and taking into 
account item (b) of Proposition 2.16, we infer:

0 = ∂

∂s
gγ′

s
( �Xi, γ

′
s(t))

= gγ′
s
(∇

γ′
s

∂s
�Xi, γ

′
s(t))

+ gγ′
s
( �Xi,

∇γ′
s

∂s

∂

∂t
γs(t))

+ 2Cγ′
s
(∇

γ′
s

∂s
γ′
s(t), �Xi, γ

′
s(t))

The above equation, the fact that ∇γ′
s

∂s
�Xi|s=0,t=t0

= ∇γ′
0

J(t0)
�Xi = ∇γ′

0
0

�Xi = 0 and Eq. (2.1) allow us to 
conclude that
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0 = gγ′
0

(
�Xi,

∇γ′
0

∂t

∂

∂s
γs(t0)|s=0

)
= gγ′

0
(Xi,

∇γ′
0

∂t
J(t0)). (4.1)

Eq. (4.1) implies that

J ′(t0) ∈ H(t0) andJ(t0) = 0. (4.2)

Here H(t0) = {w ∈ Tγ(t0)M |, gγ′(t0)(w, Xi(γ(t0)) = 0, ∀i}.
We claim that the normal cone νγ(t0)(Lγ(t0)) is tangent to H(t0). In order to check this claim, consider a 

curve s → v(s) with v(0) = γ′(t0) contained in the unit normal cone, i.e., gv(s)(v(s), Xi(γ(t0))) = 0, ∀i. By 
differentiating this equation with respect to s and taking into account item (b) of Proposition 2.16, we infer 
that gγ′(t0)(v′(0), Xi(γ(t0))) = 0, ∀i, i.e., that v′(0) is tangent to H(t0). An argument comparing dimensions 
allows one to conclude the proof of the claim, see also proof of [3, Lemma 2.9].

The claim and Eq. (4.2) imply the existence of a variation of geodesics t → f(s, t) so that

• t → f(0, t) = γ(t),
• t → f(s, t) are geodesics orthogonal to Lγ(t0) i.e., contained in O(γ(t0)),
• f(s, t0) = f(0, t0) = γ(t0) and J(t) = ∂

∂sf(0, t).

In fact we can define f(s, t) = π
(
e(t−t0)�gv(s)

)
where π : TM → M is the canonical projection and s → v(s)

is a curve contained in unit cone ν1
γ(t0)(Lγ(t0)) with v′(0) = J ′(t0) and v(0) = γ′(t0).

Since t → f(s, t) are geodesics contained in O(γ(t0)) and γ(0) ∈ O(γ(t0)), we conclude that the variation 
t → f(s, t) is contained in O(γ(0)) and hence that t → J(t) = ∂

∂sf(0, t) is tangent to O(γ(0)) what finishes 
the proof. �

Let us now check that codimension of the dual leaf is zero. Assume by contradiction that there exists 
v ∈ Lγ(0) orthogonal to O(γ(0)), where γ is an horizontal geodesic with γ(0) = q with K(q) > 0 for q ∈ Lq0 . 
Consider a Lγ(0)-Jacobi field J , so that J(0) = v. Since we have proved above that the first summand of 
the decomposition presented in Proposition 4.2 is tangent to the orbit O(γ(0)), we have that J can not be 
contained in this summand. Hence, by Proposition 4.2, J must be a non trivial parallel Jacobi vector field, 
that implies that the curvature can not be positive, what contradicts our hypothesis that K(q) > 0.

Since we have proved that O(q) has codimension zero for each q ∈ Lq0 and each point x ∈ M is contained 
in an orbit O(q) (for q ∈ Lq0), we conclude that O(q0) = M .

It follows from item (a) of Theorem 1.1 that M = O(q0) = O(q) = Aq(C). This concludes the proof of 
Proposition 1.2 and hence the proof of item (b) of Theorem 1.1.

5. Wilking’s transverse Jacobi fields

We reproduce here, in more general context, the construction of transverse Jacobi fields presented in [13], 
in [7] and in [9] in order to obtain a Finslerian version of the Corollary 10 in [13], i.e., Proposition 4.2.

5.1. Jacobi triples and Jacobi equation

A Jacobi triple (E, D, R) is composed by

• Euclidean vector field E (total space) over a open interval I ⊂ R (with rank n);
• a covariant derivative D : Γ(E) → Γ(E) compatible with the fiberwise metric of E;
• a self-adjoint C∞(I)-homomorphism R : Γ(E) → Γ(E).
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Presented in this way, this definition seems a little artificial. Indeed, this is an algebraic approach whose 
intention is to condense the relevant data and properties of Jacobi fields that will be useful throughout 
section 5.

Given a Jacobi triple (E, D, R), the kernel of the second order differential operator D2 +R will be called 
the space of (E, D, R)-Jacobi fields (or simply Jacobi fields) and will be denoted by J (E, D, R) (or simply 
by J ). Since D2 + R is a linear operator, for each t ∈ I, the map J �−→ (J(t), DJ(t)) is an isomorphism 
between J and Et ⊕ Et. In particular, dim(J ) = 2rank(E) = 2n.

The space of Jacobi fields J inherits a canonical symplectic form ω given by

ω(J1, J2) := 〈DJ1, J2〉 − 〈J1, DJ2〉 .

Note that the right term of this definition is in fact independent of the t parameter. Precisely ω is the 
pullback of the canonical form by the isomorphism J �−→ (J(t), DJ(t)). As usual, the space of Lagrangian 
subspaces of (J , ω) (the Grassmannian Lagrangian of (J , ω)) will be denoted by Λ(J ), i.e.

Λ(J ) := {L ⊂ J : L is a Lagrangian subspace of J }. (5.1)

Finally we establish some useful notation. Given I ⊂ J a vector subspace of Jacobi fields for each t ∈ I

it will be denoted

I(t) := {J(t) ∈ Et : J ∈ I} and I0
t := {J ∈ I : J(t) = 0}.

Following this notation we point out that I0
t is isomorphic to D(I0

t )(t) = {DJ(t) : J ∈ I0
t }.

5.2. Illustrative examples

Looking for a consolidation of our algebraic approach we present some geometrical examples of subspaces 
of Jacobi fields in an increasing rate of complexity. The focus is the subspaces determined by the symplectic 
structure (i.e. isotropic and Lagrangian subspaces). Some future notation will be presented as well.

Example 5.1 (Finslerian Jacobi fields). Let M be a Finsler manifold with fundamental tensor g and γ a 
geodesic segment. Observe that (γ∗TM, gγ′(·)) is a Euclidian vector bundle over I. Denote by Dγ′

γ the Chern 
covariant derivative along γ and Rγ′ the Jacobi operator along γ. Then (γ∗TM, Dγ′

, Rγ′) is a Jacobi triple.
The set of Jacobi fields associated with (γ∗TM, Dγ′

, Rγ′) will be denoted by Jγ .

In the next two examples we are going to use the notation established in the previous example.

Example 5.2 (L-Jacobi fields). Let Mn be a Finsler manifold, L ⊂ M a immersed submanifold and γ :
[a, b] ⊂ R −→ M a geodesic segment such that γ(a) ∈ L and γ′(a) is gγ′(a)-orthogonal to L. Denote 
prL : Tγ(a)M → Tγ(a)L the canonical projection with respect to the gγ′-orthogonal decomposition of Tγ(a)M .

The set o L-Jacobi fields is defined by

J L
γ := {J ∈ Jγ : J(a) ∈ Tγ(a)L and prL(Dγ′

γ J(a)) = Sγ′(a)(J(a))},

where Sγ′(a) is the shape operator of L in the direction γ′(a). As we previously discuss, this is precisely the 
Jacobi fields obtained by variations of γ through geodesics starting perpendicular to L. An advantage in 
this presentation is that will became more easily to see that J L

γ is a Lagrangian subspace of Jacobi fields. 
Clearly the self-adjointness of Sγ′(a) guarantees that J L

γ is isotropic, i.e.,
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Fig. 3. Figure generated by the software geogebra.org illustrating a submersion on Randers space, with horizontal geodesic γ, 
horizontal bundle Ht and the vertical bundle Vt of Finsler submersion, see Example 5.3.

ω(J1, J2) = 〈Dγ′

γ (J1), J2〉 − 〈J1, D
γ′

γ (J2)〉
= 〈−Sγ′(a)(J1(a)), J2(a)〉 − 〈J1(a),−Sγ′(a)(J2(a))〉
= 0

where J1, J2 ∈ J L
γ . The dimension of J L

γ is determined by the linearly independent choices for the initial 
conditions of its Jacobi fields which implies that dim(J L

γ ) = dim(Tγ(a)L) + dim((Tγ(a)L)ω) = 1
2 dim(Jγ).

Example 5.3 (Finsler submersions). Let π : Mm+k −→ Bk be a Finsler submersion and γ : [a, b] ⊂ R −→ M

a horizontal geodesic; see Fig. 3. Along γ it is possible to consider a horizontal bundle H by gγ′ -orthogonal 
complement of the vertical bundle V := γ∗Ker(dπ), which will allow us to define operators analogous to the 
O’Neill tensors in Riemannian submersions and thus be able to work with holonomy type of Jacobi fields and 
projectable Jacobi fields just like in the Riemannian case. More precisely, we consider Sγ′ : Γ(V ) → Γ(V )
the shape operator of the fibers in the direction γ′, we define Aγ′ : Γ(γ∗TM) → Γ(γ∗TM) by Aγ′(X) :=
(Dγ′

γ XV )H + (Dγ′
γ XH)V and denote Aγ′ := Aγ′ |Γ(H).

The set of holonomy type Jacobi fields (along γ) is defined by

J hol
γ := {J ∈ Jγ : J(a) ∈ Vγ(a) and Dγ′

γ J(a) = −(Sγ′(a) + A∗
γ′(a))(J(a))}

and this is an example of isotropic subspace of Jγ. This is simple to verify since the shape operator is 
self-adjoint and the holonomy type Jacobi fields are vertical in its initial point. In fact they are everywhere 
vertical. Additionally, once a Jacobi field is determined by its initial conditions it is simple to conclude that 
dim(J hol

γ ) = rank(V ) = k.
Like in the case of L-Jacobi fields it is more suitable for computations to define J hol

γ algebraically and 
postpone its geometrical meaning. In this case they can be obtained by variations of γ through horizontal 
geodesics that are horizontal lifts of the geodesic π ◦ γ.

Another remarkable space of Jacobi field associated with a Finsler submersion is the set of projectable 
Jacobi fields which is defined by

J proj
γ := {J ∈ Jγ : Dγ′

γ JV = −Sγ′(JV ) −Aγ′(JH)}

and this is an example of coisotropic subspace of Jγ . More precisely this is the symplectic orthogonal of 
J hol
γ . To see this, we first observe that J proj

γ ⊂ (J hol
γ )ω which is a direct consequence of the subsequent 

computation

ω(J1, J2) = 〈Dγ′

γ J1, J2〉 − 〈J1, D
γ′

γ J2〉
= 〈−Sγ′(a)(J1(a)), JV

2 (a)〉 + 〈−A∗
γ′(a)(J1(a)), JH

2 (a)〉+
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− 〈J1(a),−Sγ′(a)(JV
2 (a))〉 − 〈J1(a),−Aγ′(a)(JH

2 (a))〉

= 0

where J1 ∈ J hol
γ and J2 ∈ J proj

γ . Since the dimension of a subspace of Jacobi fields is determined by linearly 
independent choices for the initial conditions, clearly we have dim(J proj

γ ) = dim(Tγ(a)M) + rank(H) =
2n + k.

It is worth to mention that the projectable Jacobi fields can be obtained by variations of γ through 
horizontal geodesics. The term “projectable” is due to the fact that each Jacobi field of J proj

γ is π-related to 
a Jacobi field of Jπ◦γ . In fact, there is a well defined projection map π∗ : J proj

γ → Jπ◦γ which is surjective 
and such that Ker(π∗) = J hol

γ .
In conclusion, a Finsler submersion offers to us an example where all the symplectic-types subspaces of 

Jacobi fields (isotropic I, Lagrangian L and coisotropic Iω) are present, as follows

I ⊂ L ⊂ Iω

= = =

J hol
γ ⊂ JMb

γ ⊂ J proj
γ

where Mb is the fiber of π through b = π(γ(a)). Furthermore, as consequence of the isomorphism theorem 
applied to π∗, we have the following nice geometric interpretation for the symplectic reduction

Iω

I =
J proj
γ

J hol
γ

≈ Jπ◦γ .

5.3. Structures associated with isotropic subspaces of Jacobi fields

We stress in this section some technical results required to prove Lemma 5.4 in a manner that the reader 
can skip the proofs in this section without a further damage in the comprehension of this lemma and its 
proof.

More precisely we are going to generalize some aspects of the holonomy type Jacobi fields present in 
Example 5.3 to any isotropic subspace I of a given Jacobi triple (E, D, R). Two structures associated with a 
I will be explored, the I-transverse Jacobi fields and the I-Riccati operators. Although this generalization 
seems futile it will be quite useful in the proof of Lemma 5.4 where the choice of a specific isotropic subspace 
I is the key idea of the proof.

5.3.1. Horizontal bundle and transverse Jacobi fields
We start with a Lemma that describes the vertical bundle associated with an isotropic subspace I.

Lemma 5.4. Let I ⊂ J be an isotropic subspace. Then

(a) (Singular instants) The set {t ∈ I | I0
t �= {0}} ⊂ I is discrete.

(b) (Vertical bundle) The set

V I :=
∐
t∈I

I(t) ⊕D(I0
t )(t)

is a vector subbundle of E with rank equal to the dimension of I.

Proof. The proof is similar to the proof presented in Lemma 3.3 of [3]. �
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Following the previous lemma, given an isotropic subspace I, the set

II := {t ∈ I | I0
t = {0}} (5.2)

will be called the set of I-regular instants and in a logical contrast his complement will be called the set of 
I-singular instants (item (a)).

Furthermore the item (b) of the lemma associates I to a vector subbundle V I ⊂ E which will be called 
the vertical subbundle (associated with I) and its orthogonal complement HI will be called horizontal 
subbundle (associated with I). The names of this subbundles are inspired by Example 5.3. When there is 
no risk of confusion, the spaces V I and HI will be simply denoted by V and H, respectively.

It is immediate from the item (b) that for each t ∈ II we have I(t) = Vt. In particular for any Lagrangian 
subspace L we have L(t) = Et for all t ∈ IL by dimension issues.

Relatively to the decomposition E = V ⊕H we denote the horizontal projection by πH and the horizontal 
components of the operators D and R by DH and RH := (R|H)H i.e., the H-component of the restriction of 
R to H. To deal with mixed components of the covariant derivative we define the tensor A : Γ(E) → Γ(E)
as

A(X) := (DXV )H + (DXH)V ;

cf. the definition of O’Neill tensor in Example 5.3.
It is straightforward to see that A is in fact a C∞(I)-homomorphism. Also A has the remarkable property 

that AV = −A∗
H which is proved in [3] and as a consequence

A2|H = AV AH = −A∗
HAH (5.3)

is self-adjoint nonpositive operator.

Proposition 5.5 (transverse Jacobi equation). Let I ⊂ J be an isotropic subspace. Then

(a) (H, DH , RH − 3A2|H) is a Jacobi triple.
(b) Ker(πH|Iω ) = I and πH(Iω) = JI , where JI is the space of Jacobi fields associated to (H, DH , RH −

3A2|H).
(c) πH : Iω/I −→ JI is a symplectic isomorphism.

Proof. The item (a) is immediate, once A2|H is self-adjoint. Then we proceed with the proof of items (b) 
and (c).

(b) First we are going to prove that Ker(πH|Iω ) = I. It is easy to check that Ker(πH|Iω ) ⊃ I so we 
are going to concentrate in prove that Ker(πH|Iω ) ⊂ I. Given [J ] ∈ Ker(πH|Iω ) the vector subspace 
Î = I + RJ is isotropic (since J ∈ Iω) and for any Î, I-regular t ∈ I

dim(I + RJ) (∗)= dim(Î(t)) (∗∗)= dim(I(t)) (∗)= dim(I) (5.4)

where the equality (∗) follows from the fact that t is regular and the equality (∗∗) follows from the fact 
that J ∈ Ker(πH), i.e., J(t) is vertical. Eq. (5.4) implies that J ∈ I.
Now we are going to prove that πH(Iω) = JI . Note that it suffices to prove that πH(Iω) ⊂ JI since

rank(πH|Iω ) = dim(Iω) − dim(Ker(πH|Iω )) = 2dim(H).
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Also note that:
Claim Given Ĵ ∈ Iω there exists J ∈ Iω so that
(1) J(t0) = ĴH(t0), where t0 is a I-regular time.
(2) [J ] = [Ĵ ], i.e., πH(J) = πH(Ĵ).
In fact, since t0 is I-regular, we have I(t0) = Vt0 and there exists J̃ ∈ I such that J̃(t0) = ĴV (t0). Set 
J := Ĵ − J̃ ∈ Iω. Clearly [J ] = [Ĵ ] and J(t0) = Ĵ(t0) − J̃(t0) = ĴH(t0), and this concludes the proof of 
the claim.
Fix a I-regular t0 ∈ I, ut0 ∈ Ht0 , J ∈ Iω such that J(t0) ∈ Ht0 , X ∈ Γ(H) DH -parallel such that 
X(t0) = ut0 . Due to the above claim, in order to prove that πH(Iω) ⊂ JI it suffices to prove Eq. (5.5)
below.

〈
D2

HJH(t0), ut0

〉
= −

〈
(RH − 3A2|H)J(t0), ut0

〉
. (5.5)

Let us accept for a moment the following two equations that we are going check later:

〈J(t0), D2X(t0)〉 = 〈J(t0),A2(X)(t0)〉. (5.6)

〈(DJ)V (t0), v〉 = 〈A∗(JH(t0)), v〉 ∀v ∈ Vt0 . (5.7)

Replacing Eq. (5.6) and Eq. (5.7) in the equation below (evaluated at t = t0) we conclude the desired 
Eq. (5.5).

〈
D2

HJH , X
〉

=
〈
JH , X

〉′′
= 〈J,X〉′′

=
〈
D2J,X

〉
+ 2 〈DJ,DX〉 +

〈
J,D2X

〉
= 〈−RJ,X〉 + 2

〈
DJ, (DX)V

〉
+

〈
J,D2X

〉
=

〈
(−RJ)H , X

〉
+ 2

〈
(DJ)V , (AHX)

〉
+

〈
J,D2X

〉
.

We now check Eq. (5.6).

〈J(t0), D2X(t0)〉 = 〈J(t0), (D2X)H(t0)〉
= 〈J(t0), (D(DX)V )H(t0)〉
= 〈J(t0),A(DX)V (t0)〉
= 〈J(t0),AAX(t0)〉

Finally we check Eq. (5.7). Consider J̃ ∈ I so that J̃(t0) = v ∈ Vt0

〈(DJ)V (t0), J̃(t0)〉 = 〈DJ(t0), J̃(t0)〉
= 〈J(t0), (DJ̃)H(t0)〉
= 〈J(t0),AJ̃(t0)〉
= 〈A∗J(t0), J̃(t0)〉
= 〈A∗J(t0)H , J̃(t0)〉.

(c) Fix a I-regular t0 ∈ I, [J1], [J2] ∈ Iω such that J1(t0), J2(t0) ∈ Ht0 and X1, X2 ∈ Γ(H) DH -parallel 
such that Xi(t0) = Ji(t0) for i = 1, 2. Then
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ω([J1], [J2]) = 〈DJ1(t0), X2(t0)〉 − 〈X1(t0), DJ2(t0)〉

=
(〈
JH

1 , X2
〉
−

〈
X1, J

H
2
〉)′ (t0)

=
〈
DHJH

1 (t0), X2(t0)
〉
−

〈
X1(t0), DHJH

2 (t0)
〉

= ωI(JH
1 , JH

2 ),

where ωI is the symplectic form associated to (H, DH , RH − 3A2|H). �
The space JI of Jacobi fields associated with the Jacobi triple (H, DH , RH − 3A2|H) will be called the 

space of I-transverse Jacobi fields. As well as J , the set of transverse Jacobi fields possess a symplectic 
form ωI (see Section 5.1). It is quite useful to mention that the Lagrangian subspaces of (JI , ωI) have a
nice description which relates them to the Lagrangian subspaces of J . This is the content of the subsequent 
corollary which follows as a consequence of the item (c) of the previous proposition.

Corollary 5.6 (transverse Lagrangian subspaces). The map

{L ∈ Λ(J ) | I ⊂ L} � L −→ πH(L/I) ∈ Λ(JI)

is a bijection.

Remark 5.7. A geometric view of the transverse Jacobi vector fields, in a particular case, could be drawn 
from Example 5.3. Given a Finsler submersion π : M → B and a horizontal geodesic γ it was presented in 
that example a isomorphism between the symplectic reduction J proj

γ /J hol
γ (quotient between projectable 

Jacobi fields and holonomy Jacobi fields) and the space Jπ◦γ of Jacobi fields along the projected geodesic. 
Then from item (c) of the previous proposition, the space of J hol

γ -transverse Jacobi fields is isomorphic to 
the Jπ◦γ .

5.3.2. Riccati operators
Let L ⊂ J be a Lagrangian subspace. Then for each t ∈ IL the linear operator SL

t : Et → Et given by 
SL
t (ut) := DJ(t), where J ∈ L is such that J(t) = ut, is well defined and self-adjoint, see [6]. Therefore it 

induces a C∞(IL)-endomorphism in Γ(EIL), the Riccati operator (associated with L), which will be denoted 
by SL.

Lemma 5.8. Assume that IL = R. Let ξ ∈ O(E) be a D-parallel orthonormal frame. Then

(a) [SL]ξ is a solution of the Riccati differential equation (in the space of symmetric matrices M sym
n (R))

X ′ + X2 + [R]ξ = 0. (5.8)

Moreover Ker(SL −D) = L.
(b) Given X : IX ⊂ I → M sym

n (R) a solution of Eq. (5.8) and denoting by SX the C∞(IX)-endomorphism 
in Γ(E|IX ) characterized by [SX ]ξ = X, the subspace L := Ker(SX − D) ⊂ J is Lagrangian and 
SL = SX .

Proof. (a) It is immediate to see that SL = D in L from which follows that

−[R]ξ[J ]ξ = [D2J ]ξ = [D(SJ)]ξ = [S]′ξ[J ]ξ + [S]ξ[DJ ]ξ.

Then the fact that L(t) = Et for all t ∈ IL and the item (a) of Lemma 5.4 concludes the proof of this 
item.
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(b) Since X is symmetric we have that SX is self-adjoint so Ker(SX − D) is isotropic. Furthermore 
dim(Ker(SX −D)) = rank(E) (since SX −D is a differential operator of order 1). Then Ker(SX −D)
is in fact Lagrangian. �

Corollary 5.9. Assume that IL = R. The function IL � t → tr(SL
t ) ∈ R is a solution for the following 

Riccati equation

x′ + x2 + r = 0

where r : IL ⊂ R → R is given by r = tr(R) + (tr(SL2) − tr(SL)2).

The previous lemma creates, for a fixed D-parallel orthonormal frame ξ, a bijection between the La-
grangian Grassmannian Λ(J ) (see Eq. (5.1)) and the space of solutions of the Riccati differential equation 
X ′ + X2 + [R]ξ in the space of real symmetric matrices.

Various comparison result related to this type of Riccati differential equation was presented in [4]. Here we 
state a more weak result which will be useful for the proof of Wilking’s decomposition lemma (Lemma 5.11).

Proposition 5.10. Let L ⊂ J be a Lagrangian subspace. If IL = R and tr(R) ≥ 0, then tr(R) = 0 and SL

is identically 0.

Proof. For the sake of completeness, let us briefly review the idea of the proof extracted from the proof of 
Theorem 1.7.1 of [6].

Define r : IL ⊂ R → R by r = tr(R) + (tr(SL2) − tr(SL)2), as well as in Corollary 5.9. Since tr(R) ≥ 0
(by hypothesis) and in general tr(SL2) ≥ tr(SL)2, both summands in the definition of r are nonnegative 
and in particular r ≥ 0. We state that in this case tr(SL) = 0. Suppose by contradiction that tr(SL) �= 0
or more specifically there exists t0 ∈ IL such that tr(SL

t0) �= 0. Without loss of generality, assume that 
t0 = 0. Then t �−→ tr(SL

t ) is a solution of the differential equation x′(t) + x(t)2 + r(t) = 0 with a non null 
initial condition x0 = tr(SL

t0) which implies that limt→− 1
x0

− tr(SL
t ) = −∞, which is a contradiction. Finally 

Corollary 5.9 implies that r = 0 and by the definition of r we have that tr(R) = 0 and tr(SL2) = tr(SL)2
which occurs if only if SL = 1

n tr(SL)Id. Then SL = 0. �
Following what was presented in the previous section, given a isotropic subspace I ⊂ J , we can associate 

a Riccati operator SLI to any I-transverse Lagrangian subspace LI (i.e. a lagrangian subspace of JI). 
Furthermore, by Corollary 5.6, SLI can be associated with a Lagrangian subspace L ⊂ J , such that L ⊃ I.

The Riccati operator SLI will be called a I-transverse Riccati operator (associated to LI) and the 
Lemma 5.8 and Proposition 5.10 holds to this type of Riccati operator either.

5.4. Wilking’s decomposition lemma

We are finally ready to enunciate and prove the Wilking’s decomposition lemma. It is worth to mention 
that, as noted at the beginning of the Section 5.3, the central idea of the proof of this lemma is the choice 
of the following specific isotropic subspace

I = spanR{J ∈ L | J(t) = 0 for some t ∈ R}

where L is a fixed Lagrangian subspace of a given Jacobi triple.

Lemma 5.11 (Wilking’s decomposition). Let (E, D, R) be a Jacobi triple, such that the base of E is R and 
R is nonnegative. Then
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L = spanR{J ∈ L | J(t) = 0 for some t ∈ R} ⊕ {J ∈ L | J is parallel},

for all L ∈ Λ(J ).

Proof. Define

I := spanR{J ∈ L | J(t) = 0 for some t ∈ R}. (5.9)

It is immediate that I ⊂ J is isotropic subspace of Jacobi fields. Then denote k = dim(I) and consider 
V and H the vertical and horizontal subbundles of E induced by I. Also denote by πH the horizontal 
projection whit respect to the decomposition E = V ⊕H and by LI = πH(L) = πH(L/I) the I-tranversal 
Lagrangian subspace induced by I which is explicitly described by this

LI = {JH ∈ JI | J ∈ L}

where JI is the space of I-transverse Jacobi fields.
It is immediate that I ⊂ J is isotropic subspace of Jacobi fields so that by Proposition 5.5 we have

L ≈ I ⊕ L/I ≈ I ⊕ LI .

Then it suffices to prove that LI = {J ∈ L | J is parallel}. Note that LI ⊃ {J ∈ L | J is parallel}. In fact 
for each J ∈ L parallel and J̃ ∈ I we have that 〈J, J̃〉′ = 〈DJ, J̃〉 +〈J, DJ̃〉 = 2〈DJ, J̃〉 = 0 and consequently 
〈J, J̃〉 = 0 i.e. J is horizontal.

In what follows we prove that LI ⊂ {J ∈ L | J is parallel} or equivalently that JH is D-parallel Jacobi 
field in L for all J ∈ L. First we need to prove the next two claims.

Claim A. ILI = R and the I-transverse Riccati operator SLI is identically 0.

Proof. First note that

I = {J ∈ L | J(t) ∈ Vt for some t ∈ R} . (5.10)

In fact, if J(t) ∈ Vt for some t ∈ R, there exists J1 ∈ I and J2 ∈ I0
t (i.e. J2(t) = 0) such that J(t) =

J1(t) +DJ2(t) (see item (a) of Lemma 5.4). By multiplying both sides of the equation by DJ2(t) and using 
the fact that ω(J, J2) = ω(J1, J2) = 0 we can infer that ‖DJ2(t)‖2 = 0. We conclude that J −J1 is a Jacobi 
field in L such that (J − J1)(t) = 0 and by the definition of I (see Eq. (5.9)) J − J1 ∈ I or equivalently 
J ∈ I. The other inclusion follows from the fact that each J ∈ I is vertical.

Now take a L-regular instant t0 ∈ R and J1, · · · , Jn−k ∈ L such that {JH
1 (t0), · · · , JH

n−k(t0)} ⊂ Ht0 is a 
base. Then {JH

1 , · · · , JH
n−k} is a frame of H. In fact for each t ∈ R if 

∑
λiJ

H
i (t) = 0 then 

∑
λiJi ∈ I (by 

Eq. (5.10)) which implies that 
∑

λiJ
H
i (t0) ∈ Ht0 ∩ Vt0 = {0} and follows that λi = 0.

Finally, since H has a global frame of the form {JH
1 , · · · , JH

n−k}, we conclude that spanR{JH
1 , · · · , JH

n−k} =
LI and consequently LI(t) = Ht which by definition of LI-regular instants means that ILI = R (see eq. (5.2)
and remember that the total space for I-transverse Jacobi fields is H).

Additionally, since R is nonnegative, Proposition 5.10 implies that SLI ≡ 0.

Claim B. RH , A = 0.

Proof. Since SLI = 0 (see Claim A), it follows by the transverse version of Riccati equation, i.e. (SLI )′ +
(SLI )2 + (RH − 3A2|H) = 0 (see Eq (5.8)), that RH = 3A2|H . This equation together with Eq. (5.3) imply 
that ∀X
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〈RHX,X〉 = 〈3A2|HX,X〉
= −3〈A∗

HAHX,X〉
= −3〈AHX,AHX〉

Therefore, since by hypothesis RH is nonnegative, we infer that RH = 0 and hence A = 0.

Now we are going to prove that JH is D-parallel for all J ∈ L. Indeed JH is DH -parallel since DHJH =
SLIJH = 0 (see Claim A and item (a) of Proposition 5.8) which means that (DJH)H = 0. The nullity of 
the vertical component of DJH follows from the fact that 〈(DJH)V , J̃〉 = 〈AJH , J̃〉 = 0 for all J̃ ∈ I.

Now we proceed with the proof that JH is a Jacobi field. Since JH is D-parallel it suffices to prove that 
RJH = 0. By R self-adjointness and JH D-parallelism, for each J̃ ∈ I, follows that

〈
(RJH)V , J̃

〉
=

〈
RJH , J̃

〉
=

〈
JH , RJ̃

〉
=

〈
JH ,−D2J̃

〉
= −

〈
JH , DJ̃

〉′
= −

〈
JH , J̃

〉′′
= 0.

Then by Claim B we conclude that RJH = (RJH)V + RHJH = 0.
Finally we finish with the proof that JH ∈ L. Indeed it is immediately from JH D-parallelism that 

ω(JH , J̃) = −〈JH , J̃〉′ = −〈JH , J̃H〉′ = 0 for all J̃ ∈ L which implies that JH ∈ Lω = L. �
As a direct consequence of Wilking’s decomposition lemma, we can infer Proposition 4.2.
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